
MusicBrainz Picard
Release v2.12

Jun 28, 2024

MusicBrainz Picard User Guide by Bob Swift is licensed under CC0 1.0. To view a copy

of this license, visit https://creativecommons.org/publicdomain/zero/1.0

CONTENTS

1 Introduction 1

1.1 Picard Can… . 2

1.2 Picard Cannot… . 2

1.3 Limitations . 2

2 Contributing to the Project 3

3 Acknowledgements 4

4 Glossary of Terms 6

5 Getting Started 10

5.1 Download & Install Picard . 10

5.2 Starting Picard . 12

5.3 Main Screen . 13

5.4 Status Icons . 19

6 Configuration 22

6.1 Screen Setup . 22

6.2 Action Options . 23

6.3 Option Settings . 23

7 Tags & Variables 81

7.1 Basic Tags . 81

7.2 Advanced Tags . 87

7.3 Basic Variables . 90

7.4 File Variables . 92

7.5 Advanced Variables . 93

7.6 Classical Music Tags . 96

7.7 Tags from Plugins . 96

7.8 Other Information . 100

8 Scripting 101

8.1 Syntax . 101

8.2 Metadata Variables . 102

i

9 Scripting Functions 103

9.1 Assignment Functions . 103

9.2 Text Functions . 107

9.3 Multi-Value Functions . 120

9.4 Mathematical Functions . 129

9.5 Conditional Functions . 132

9.6 Information Functions . 146

9.7 Loop Functions . 155

9.8 Miscellaneous Functions . 156

10Using Picard 158

10.1 Retrieving Album Information . 158

10.2 Matching Files to Tracks . 172

10.3 Setting the Cover Art . 174

10.4 Saving Updated Files . 176

11Work Flow Recommendations 178

11.1 When the CD is available . 178

11.2 When the ripper log file is available . 180

11.3 When files are grouped by album . 181

11.4 When files are not grouped but have some metadata 182

11.5 When files are not grouped and have little or no existing metadata 183

12Other Picard Tasks 185

12.1 Attaching a Disc ID to a Release . 185

12.2 Submitting Acoustic Fingerprints . 188

12.3 Generating tags from file names . 193

12.4 Submitting Cluster as a Release . 196

13Option Profiles 200

13.1 How Option Profiles Work . 200

13.2 Example of Using Profiles . 200

13.3 Managing Option Profiles . 201

13.4 Saving Profile Option Settings . 204

14Command and Batch Processing 207

14.1 Executable Commands . 209

15Extending Picard 215

15.1 Plugins . 215

15.2 Scripts . 216

15.3 Processing Order . 220

16Troubleshooting 222

16.1 General Troubleshooting . 222

16.2 Picard won’t start . 225

16.3 There is no coverart . 226

16.4 Tags are not updated or saved . 227

16.5 Files are not being saved . 228

ii

16.6 Picard just stopped working . 228

16.7 macOS shows the app is damaged . 229

17Frequently Asked Questions 230

17.1 Using Picard . 230

17.2 File Formats . 232

17.3 Configuration . 236

18Tutorials 238

18.1 Writing a File Naming Script . 238

18.2 Understanding Acoustic Fingerprinting and AcoustIDs 241

18.3 Handling of multiple release countries . 243

18.4 Writing a Plugin . 245

18.5 Loading releases with MusicBrainz for Android 250

19Appendices 263

19.1 Appendix A: Plugins API . 263

19.2 Appendix B: Tag Mapping . 270

19.3 Appendix C: Command Line Options . 294

19.4 Appendix D: Keyboard Shortcuts . 296

iii

CHAPTER

ONE

INTRODUCTION

MusicBrainz Picard is a cross-platformmusic file tagger. For any people who don’t know

what this means, here is a quick explanation which can be skipped by those people

who already know.

Your music files don’t just contain music. They also contain “metadata”, consisting of

“tags” which consist of a tag name or type and associated data, for example the album

or track name, the name of the artist, the record label, the year of issue etc. Unless

you rip the music files yourself with a very basic tool, your music files probably already

contain some basic metadata, however there are literally hundreds of tags that can be

applied to your music if you are interested.

Obviously, if you wanted to you could painstakingly research all this information for

each album and track individually, and type the data into a tagging tool, but clearly

it makes more sense in this internet connected age for one person to do this for each

album and track, to upload that data to a shared database and then for the tagging

tool to access that database and use the data to tag the music files. And that is what

MusicBrainz Picard does.

MusicBrainz is the database, and Picard is the tool that tags the music files.

This User Guide is intended to provide comprehensive information related to the use of

MusicBrainz Picard and additionally to make this available in alternate formats, includ-

ing a PDF version suitable for printing. Links to additional information such as scripts,

plugins and tutorials are provided when available rather than trying to reproduce the

information in this document.

In order to effectively use Picard, it is important to understand what the program can

do and, equally important, what it cannot do. Picard is primarily intended to tag and

organize albums containing tracks, guided by the user to the specific release of the

album that they have, and then to keep the metadata for these tracks up to date as

users around the world enhance the quality of the MusicBrainz data associated with

that particular release and track; Picard does this very well indeed. However, it is not

intended to automatically organize your collection of thousands of random music files,

and if this is what you are hoping for then you will likely be disappointed. To quote

from the Picard website, “Picard is not built to be a mass single-track tag fixer. Picard

believes in quality over quantity and provides a plethora of customizations to tweak

music collections to your needs.”

1

https://picard.musicbrainz.org/

MusicBrainz Picard, Release v2.12

1.1 Picard Can…

…add metadata tags to your music files, based on information available from the

MusicBrainz website.

…look up themetadata eithermanually or automatically based on existing information,

including artist and song name, disc id (for CDs), and a track’s AcoustID fingerprint.

…retrieve and embed coverart images from a variety of sources.

…rename and place the music files in directories based on naming template instruc-

tions provided in a naming script.

…calculate and submit a disc id to the MusicBrainz database, attaching it to a specified

release.

…calculate and submit a music file’s AcoustID fingerprint to the AcoustID database.

1.2 Picard Cannot…

…automatically identify and remove all duplicate music files in your collection.

…provide metadata not already existing in the MusicBrainz database.

1.3 Limitations

File Formats

Picard currently supports most music file formats, with Matroska (.mka) being one

notable exception. Microsoft WAVE (.wav) files can be fingerprinted and renamed and

can be tagged using ID3v2 tags, but this is not supported by all playback software. In

addition, Picard does not support writing custom tags for all formats.

The Picard Tag Mappings section provides more information regarding the mapping

between Picard internal tag names and various tagging formats.

Request Rate Limiting

Picard’s metadata retrieval is limited to the standard one request per second rate

limiting for the MusicBrainz API. This becomes quite noticeable when trying to process a

large list of files, and is exacerbated by extensions that perform additional information

requests from the database.

Network File Processing

Sometimes Picard needs to rewrite the entire music file in order to add or update the

tags. This can take a few seconds, and the delay becomes even longer if the file is

accessed across a network (e.g.: file is read from or written to a NAS device). The

recommended “best practice” is to process all files on a local drive and then move

them to the desired remote directory once processing is complete.

2 Chapter 1. Introduction

https://musicbrainz.org/
https://acoustid.org/

CHAPTER

TWO

CONTRIBUTING TO THE PROJECT

This document only exists because of the volunteer effort that went into its develop-

ment, from the initial documentation on the Picard website, the information posted in

the Community Discussion Forum, documentation from scripts, plugins and program

source code, proofreaders, editors, translators, and feedback from the user commu-

nity.

Further high quality contributions are welcomed from all Picard users wanting to be

part of the open source community that creates and maintains this valuable music

tool. Even if you cannot write code, based on your experience of using Picard any help

you can give to improve this documentation further will be most appreciated. Even if

you cannot improve the existing help, if you can create or maintain translations into

other languages, that would be of great benefit.

If you notice an error in the documentation or have additional material to contribute,

please create a ticket under the Picard project (Documentation component). Pull Re-

quests to address outstanding issues are also appreciated.

See also:

Contributing to MusicBrainz Picard / Picard Translations / Contributing to the Documen-

tation

3

https://tickets.metabrainz.org/issues/?jql=project+%3D+PICARD+AND+component+%3D+Documentation+AND+resolution+%3D+Unresolved
https://github.com/metabrainz/picard-docs/pulls
https://github.com/metabrainz/picard-docs/pulls
https://github.com/metabrainz/picard/blob/master/CONTRIBUTING.md
https://github.com/metabrainz/picard/blob/master/po/README.md
https://github.com/metabrainz/picard-docs/blob/master/.github/CONTRIBUTING.md
https://github.com/metabrainz/picard-docs/blob/master/.github/CONTRIBUTING.md

CHAPTER

THREE

ACKNOWLEDGEMENTS

We gratefully acknowledge the following for their contributions to help develop, main-

tain and improve the Picard User Guide.

This list includes contributors to the documentation, regardless of their role. In ad-

dition to actual content contributors, this includes leads, translators, reviewers and

proofreaders. All contributions are valuable and appreciated. As such, the names are

presented in alphabetical order so as not to imply the relative importance of someone’s

contribution based on their position in the list.

Contributors include (in alphabetic surname order):

• Aerozol

• Vedant Chakravadhanula

• Pavan Chander

• Ronan Desplanques

• Gabriel Ferreira

• Giorgio Fontanive

• Rahul Kumar Gupta

• Wieland Hoffmann

• InvisibleMan78

• jesus2099

• David Kellner

• Jun Kim

• Sambhav Kothari

• Soham Kukreti

• Laurent Monin

• Akash Nagaraj

• Frederik “Freso” S. Olesen

• Guntbert Reiter

4

MusicBrainz Picard, Release v2.12

• Theodore Fabian Rudy

• Suryansh Shakya

• skelly37

• Sophist

• Odd Stråbø

• Bob Swift

• Akshat Tiwari

• Philipp Wolfer

• yvanzo

• Shadab Zafar

Note: There are likely others that have not yet been identified, so we apologize if

your name has been missed. Please let us know and we’ll make sure that it is added

to the list.

5

CHAPTER

FOUR

GLOSSARY OF TERMS

Many of the terms used in this documentation and within Picard itself have specific

meaning in the MusicBrainz environment. Specific terms are defined as follows:

acoustic fingerprint

An acoustic fingerprint is a digital summary of an audio signal, that can be

used to quickly identify the audio.

Please see Wikipedia for a full explanation of acoustic fingerprinting.

AcoustID

AcoustID is an acoustic fingerprint system built entirely on open-source tech-

nology. See the AcoustID website for additional information.

albumartist

The musician or group of musicians performing on a release. For exam-

ple, “The Beatles” is the albumartist for the album “Past Masters, Volume

One”, while the albumartist for “No Boundaries: A Benefit for the Kosovar

Refugees” is “Various Artists”.

Note: The albumartist usage is different for Classical Music releases, which

follow the MusicBrainz Classical Style Guide, listing the composer(s) first,

followed by the performers.

artist

The musician or group of musicians performing on a track. For example,

“Jeen” is the artist on the track “Be (One in a Million)” on the album “Tourist”.

Please see the Artist page on the MusicBrainz website for additional infor-

mation.

Note: The artist usage is different for Classical Music releases, which follow

the MusicBrainz Classical Style Guide, showing only the composer and not

the performers.

6

https://wikipedia.org/wiki/Acoustic_fingerprint
https://acoustid.org/
https://musicbrainz.org/release/9383a6f5-9607-4a36-9c68-8663aad3592b
https://musicbrainz.org/release/9383a6f5-9607-4a36-9c68-8663aad3592b
https://musicbrainz.org/release/65536c6a-9219-4c41-9829-781eab7cdb50
https://musicbrainz.org/release/65536c6a-9219-4c41-9829-781eab7cdb50
https://musicbrainz.org/doc/Style/Classical
https://musicbrainz.org/track/5acda7a7-697c-4614-8467-7c48b3d946a6
https://musicbrainz.org/release/472f4da8-c7dd-4e4a-8aae-9e7824f85afc
https://musicbrainz.org/doc/Artist

MusicBrainz Picard, Release v2.12

artist credit

An artist credit indicates who is the main credited artist (or artists) for re-

leases, release groups, tracks and recordings, and how they are credited.

They consist of artists, with (optionally) their names as credited in the spe-

cific release, track, etc., and join phrases between them. For example, on

the release “Love Sponge” the artist is “Walk off the Earth” but is credited

as “Gianni and Sarah”.

Please see the Artist Credits page on the MusicBrainz website for additional

information.

caa

The Cover Art Archive which is a joint project between the Internet Archive

and MusicBrainz, whose goal is to make cover art images available to every-

one on the Internet in an organized and convenient way.

Please see the Cover Art Archive page on the MusicBrainz website for addi-

tional information.

disc id

A Disc ID is the code number which MusicBrainz uses to link a physical CD to a

release listing. It is a string of letters, like XzPS7vW.HPHsYemQh0HBUGr8vuU-.

Disc IDs for a release can be seen on the disc IDs tab for the release on

MusicBrainz. Clicking on these will give a detailed display of the disc ID,

including the list of attached releases.

A release may have any number of disc IDs, and a disc ID may be linked to

multiple releases. This is because disc ID calculation involves a hash of the

frame offsets of the CD tracks. Different pressing of a CD often have slightly

different frame offsets, and hence different disc IDs.

Conversely, two different CDs may happen to have exactly the same

set of frame offsets and hence the same disc ID. For example

lwHl8fGzJyLXQR33ug60E8jhf4k- applies to a wide variety of releases by

a variety of artists.

mbid

The MusicBrainz Identifier, which is a unique code used to identify each el-

ement in the MusicBrainz database. These are 128-bit Universally Unique

Identifiers (UUID) represented as 32 hexadecimal digits, displayed in five

groups separated by hyphens, in the form 8-4-4-4-12 for a total of 36 char-

acters.

Please see the UUID page on Wikipedia for more information.

medium

One of the physical, separate things you would get when you buy something

in a record store. They are the individual CDs, vinyls, etc. contained within

the packaging of an album (or any other type of release). Mediums are al-

ways included in a release, and have a position in said release (e.g. disc 1

7

https://musicbrainz.org/release/6ca797fd-8f3a-4326-bdc7-f805cb2de088
https://musicbrainz.org/artist/e2a5eaeb-7de7-4ffe-a519-e18e427a5060
https://musicbrainz.org/doc/Artist_Credits
https://coverartarchive.org/
https://archive.org/
https://musicbrainz.org/
https://musicbrainz.org/doc/Cover_Art_Archive
https://musicbrainz.org/doc/Disc_ID_Calculation
https://musicbrainz.org/cdtoc/lwHl8fGzJyLXQR33ug60E8jhf4k-
https://en.wikipedia.org/wiki/Universally_unique_identifier

MusicBrainz Picard, Release v2.12

or disc 2). They have a format like CD, 12” vinyl or cassette (in some cases

this will be unknown), and can have an optional title (e.g. disc 2: The Early

Years). For example, CD 1 of “The Wall”.

Please see the Medium page on the MusicBrainz website for additional infor-

mation.

non-album track

This term is obsolete and has been replaced with ‘standalone recording’.

recording

An entity in MusicBrainz which can be linked to tracks on releases. Each

track must always be associated with a single recording, but a recording can

be linked to any number of tracks. For example, this recording of “Bohemian

Rhapsody” is found as a track on over 100 releases.

Please see the Recording page on the MusicBrainz website for additional

information.

release

Represents the unique issuing of a product on a specific date with specific

release information such as the country, label, barcode and packaging. For

example “Sea of No Cares” is one version of the album released by Great

Big Sea.

Please see the Release page on the MusicBrainz website for additional infor-

mation.

release group

Groups several different releases into a single logical entity. Every release

belongs to one, and only one release group. Both release groups and re-

leases are “albums” in a general sense, but with an important difference: a

release is something you can buy as media such as a CD or a vinyl record,

while a release group embraces the overall concept of an album— it doesn’t

matter how many CDs or editions / versions it had. For example the “Sea of

No Cares” release group contains multiple releases.

Please see the Release Group page on the MusicBrainz website for additional

information.

standalone recording

A recording that is not linked to any release. An example is “Sea of No Cares

(live)” by Great Big Sea.

Please see the Standalone Recording page on the MusicBrainz website for

additional information.

track

A track is the way a recording is represented on a particular release (or, more

precisely, on a particular medium). Every track has a title and is credited to

8 Chapter 4. Glossary of Terms

https://musicbrainz.org/release/4bd2dbd5-a961-335a-a618-39c26b2ee791#disc1
https://musicbrainz.org/doc/Medium
https://musicbrainz.org/recording/b1a9c0e9-d987-4042-ae91-78d6a3267d69
https://musicbrainz.org/recording/b1a9c0e9-d987-4042-ae91-78d6a3267d69
https://musicbrainz.org/doc/Recording
https://musicbrainz.org/release/4e4ba41e-24ae-3f57-87f6-3d8f19ae9483
https://musicbrainz.org/doc/Release
https://musicbrainz.org/release-group/7e7ffd2b-3d1b-3487-aaaf-e4e6037f09ca
https://musicbrainz.org/release-group/7e7ffd2b-3d1b-3487-aaaf-e4e6037f09ca
https://musicbrainz.org/doc/Release_Group
https://musicbrainz.org/recording/0198c132-ed38-430c-92bd-d3c7e9ff25b8
https://musicbrainz.org/recording/0198c132-ed38-430c-92bd-d3c7e9ff25b8
https://musicbrainz.org/doc/Standalone_Recording

MusicBrainz Picard, Release v2.12

one or more artists. For example, track 7 of the album “Back to Boston” by

Jason Anderson is “Driving Home”.

Please see the Track page on the MusicBrainz website for additional infor-

mation.

work

A distinct intellectual or artistic creation, which can be expressed in the form

of one or more audio recordings. While a ‘Work’ in MusicBrainz is usually

musical in nature, it is not necessarily so. A work could also be a novel, play,

poem or essay, later recorded as an oratory or audiobook. For example, the

song “Blinded by the Light” written by Bruce Springsteen has been recorded

well over 100 times.

Please see the Work page on the MusicBrainz website for additional informa-

tion.

See also:

For more information on these and other terms used, please refer to the Terminology

page on the MusicBrainz website.

See also:

For a detailed explanation of how all the elements are related within the MusicBrainz

environment, please refer to the MusicBrainz Database / Schema webpage.

9

https://musicbrainz.org/release/9780e88d-a9e2-4e99-87c4-e54b65e7e49b
https://musicbrainz.org/track/bf8ecb3c-6fe6-41b7-a078-5748265a9f94
https://musicbrainz.org/doc/Track
https://musicbrainz.org/work/7a757d97-da2a-3751-8d32-94d471de2eeb
https://musicbrainz.org/doc/Work
https://musicbrainz.org/doc/Terminology
https://musicbrainz.org/doc/MusicBrainz_Database/Schema

CHAPTER

FIVE

GETTING STARTED

This section provides information on how to get started using MusicBrainz Picard, in-

cluding installation and some basic information about the user interface.

5.1 Download & Install Picard

MusicBrainz Picard is available for all major desktop operating systems (e.g. Windows,

Linux and macOS), and in multiple forms (directly downloadable formal release exe-

cutables, package manager versions of these, daily build executables, Python source

code that you can execute with your own Python environment, etc.)

It is expected that most users will run formal release executables or package manager

equivalents as these are easy to install, and are stable versions which are less likely

to have bugs in experimental or new functionality.

However, any users wishing to contribute to the development of Picard or its Plugins

may want to run from source code, downloading it from GitHub using a version of Git

on their own computer. If you want to contribute to the Picard code but you don’t

understand what the previous sentence said, then you have a bit of a learning curve.

:-)

The latest version of MusicBrainz Picard is always available for download from the

Picard Website. This includes installers for all supported platforms as well as release

source code. The very latest source code is also available at the GitHub repository.

5.1.1 Installing Picard on Linux

Installing with Flatpak

Picard is available on Flathub. This version should work on all modern Linux distribu-

tions, as long as Flatpak is installed (see Flatpak Quick Setup).

First enable the Flathub repository:

flatpak remote-add --if-not-exists flathub https://flathub.org/repo/

→˓flathub.flatpakrepo

10

https://picard.musicbrainz.org/downloads/
https://picard.musicbrainz.org/downloads/#source
https://picard.musicbrainz.org/downloads/#source
https://github.com/musicbrainz/picard
https://flathub.org/apps/details/org.musicbrainz.Picard
https://flatpak.org/setup/

MusicBrainz Picard, Release v2.12

You can now install Picard:

flatpak install flathub org.musicbrainz.Picard

Installing with Snap

Picard is available as a Snap from the Snap Store. This version should work on all

modern Linux distributions, as long as Snap is installed (see Installing Snap).

The Snap Store page of Picard gives detailed instructions on how to install Picard on

various Linux distributions. If your Linux distributions supports it you can install Picard

from your distribution’s software center, e.g. Ubuntu Software or KDE Discover. You

can also install Picard from the terminal:

snap install picard

Note: Picard installed as a Snap is running inside a sandbox and thus it does not have

full access to all files and folders on your system. By default Picard has access to your

home folder. You can additionally give it access to removable media by running the

following command on a terminal:

snap connect picard:removable-media

Installing from your distribution’s package repository

Picard is available in the package repositories of most distributions. The download

page provides links to the packages for common Linux distributions. Please refer to

your distribution’s documentation for how to install software packages.

Please note that most distributions usually ship older versions of Picard. If you want to

use the latest available version, as is recommended, install Picard as Flatpak or Snap

as described above.

5.1. Download & Install Picard 11

https://snapcraft.io/docs/installing-snapd
https://snapcraft.io/picard
https://picard.musicbrainz.org/downloads/#linux
https://picard.musicbrainz.org/downloads/#linux

MusicBrainz Picard, Release v2.12

5.2 Starting Picard

Once Picard has been installed on your system, most of the time you will be starting it

by clicking an icon on your desktop or in a start menu. This will run the program using

the default location for the configuration file and configured logging level. Picard can

also be started from a command line prompt with some overrides available. From the

command line, you can also specify files or directories to load into Picard for processing.

Please see Appendix C: Command Line Options for more details about the available

options.

As of version 2.9, Picard will try to only run a single instance of the program at a

time. When the program is started, it checks to see if there is another instance of

that version, configuration file and plugin startup status -P already running. If the

same version is already running, any files or directories specified on the command

line of the new instance, along with any executable commands specified with the -e

or --exec options will be passed to the already running instance for processing and

the new duplicate instance will be shut down. This allows batch processing of files to

be initiated automatically from other processes. If there is no instance of that version

already running, Picard will start normally.

Additionally, Picard can be started in “stand-alone” mode, in which case it neither

sends information to an already running instance nor accepts information from another

instance.

Instances started with command-line argument -s / --stand-alone always start as

stand-alone.

If there is already an instance running when another instance is started that doesn’t

result in a stand-alone instance, any of the command-line overrides -d / --debug,

-M / --no-player or -N / --no-restore of the new duplicate instance will be ig-

nored, and only the specified files or directories and executable commands (if any)

will be passed to the running instance for processing. Similarly, if a primary instance

has been started with any of these overrides specified on the command line, starting

a subsequent instance of that version without the override will not modify the user

interface settings of the currently running instance.

All instances started with the -h / --help, -v / --version or -V / --long-version

command line arguments will always output the requested product information and

exit, regardless of whether or not another instance is running.

Please refer to the Command and Batch Processing section for more information.

12 Chapter 5. Getting Started

MusicBrainz Picard, Release v2.12

5.3 Main Screen

1. Menu Bar: This provides the pull-down menu of actions that Picard can perform.

2. Tool Bar: This provides quick links to the main functions performed by Picard.

This can be customized by the user in the User Interface Options settings.

3. File Browser: This provides a browser for selecting files and directories for pro-

cessing.

4. Cluster Pane: Often referred to as the “left-hand pane”, this section allows the

user to select and cluster files for scanning, lookup or matching.

5. Album Pane: Often referred to as the “right-hand pane”, this section displays the

albums retrieved from MusicBrainz. This is the section where files are matched

to downloaded track information.

6. Metadata Pane: This section is a three-column table of the tag metadata for

the album or track currently selected in the Album Pane. The first column shows

the tag name, the second shows the original value found in the file, and the third

column shows the new value that will be written.

7. Cover Art: This shows the new cover art image that will be written to the selected

album or track, along with the original cover art image found in the files matched

to the selected album or track.

8. Player: The built-in player that can be used to play selected audio files.

5.3. Main Screen 13

MusicBrainz Picard, Release v2.12

9. Status Bar: The bar at the bottom of the screen shows information about the

current operation of Picard, including such items as number of files, albums, and

pending downloads.

Picard is available for different operating systems. And while Picard’s functionality is

overall the same the specific look of the user interface can be slightly different based on

the operating system. Throughout the documentation screenshots taken on different

operating systems are used. Below you find a selection of screenshots of Picard’s main

screen on different systems:

Picard on Windows 10 (with light user interface)

14 Chapter 5. Getting Started

MusicBrainz Picard, Release v2.12

Picard on Windows 10 (with dark user interface)

Picard on macOS

5.3. Main Screen 15

MusicBrainz Picard, Release v2.12

Picard on macOS (dark mode)

Picard on Linux with the KDE Plasma desktop environment (light theme)

16 Chapter 5. Getting Started

MusicBrainz Picard, Release v2.12

Picard on Linux with the KDE Plasma desktop environment (dark theme)

Picard on Linux with the GNOME desktop environment

5.3. Main Screen 17

MusicBrainz Picard, Release v2.12

Picard on Windows 7

Picard on Haiku

18 Chapter 5. Getting Started

MusicBrainz Picard, Release v2.12

5.4 Status Icons

When albums and tracks are displayed in the right-hand pane, each line begins with

an icon to indicate the status of the item.

5.4.1 Album / Release Icons

This icon indicates that the information for the release has been

successfully retrieved from the MusicBrainz database. Some, but not all,

tracks may have been matched to files and the information has not been

modified.

This icon indicates that some of the tracks have been matched and that the

information for the release has been modified.

This icon indicates that all of the tracks have been matched and that the

information has not been modified.

This icon indicates that all of the tracks have been matched and that the

information for the release has been modified.

This icon indicates that Picard has encountered an error with the release,

typically while retrieving the information from the MusicBrainz database.

5.4. Status Icons 19

MusicBrainz Picard, Release v2.12

5.4.2 Track Icons

This icon indicates that the track is an audio track and that there is no

single file currently matched. This appears if there is no file matched, or if

there are multiple files matched.

This icon indicates that the track is a video track and that there is no file

currently matched. This appears if there is no file matched, or if there are

multiple files matched.

This icon indicates that the track is a data track and that there is no file

currently matched. This appears if there is no file matched, or if there are

multiple files matched.

These icons indicates the quality of match between the information from

the file and the information for the track as provided from the MusicBrainz

database. Red indicates a poor match, progressing to all green which

indicates a very good match.

This icon indicates that the track has been saved successfully.

This icon indicates that Picard encountered a permission error while trying

to load or save the file. This is typically due to the file being marked as

read-only, or you do not have sufficient permission to read the file or save

the file in the specified directory.

20 Chapter 5. Getting Started

MusicBrainz Picard, Release v2.12

This icon indicates that Picard could not find the file with the given path

while trying to load or save the track. This is typically due to the file being

moved or deleted since it was loaded into Picard, but could also be due to a

missing directory.

This icon indicates that Picard encountered an error while trying to load or

save the track. This is typically due to a problem writing the tags into the

file, but could also be due to a storage IO error on your system.

5.4.3 Status Bar

There is a status bar at the bottom of Picard’s main screen, which displays some in-

formation about current processing status. This includes four numbers along with the

current port number that Picard is monitoring. In addition, if Picard is currently pro-

cessing your files an estimated time to completion will also be displayed to the left of

the status indicators.

From left to right, the numbers represent:

1. The estimated processing time remaining (only displayed if Picard is actively pro-

cessing files).

2. The number of files loaded.

3. The number of MusicBrainz releases loaded.

4. The number of files with pending action (e.g. loading, saving, fingerprinting).

5. The number of active network requests.

5.4. Status Icons 21

CHAPTER

SIX

CONFIGURATION

Once Picard has been installed on your system, the next step is to configure it to your

preferences. The configuration consists of enabling the desired screen sections for

display, selecting the desired actions, and setting the various options.

6.1 Screen Setup

The screen setup is found under the “View” item on the menu bar. To enable the

display of an item, simply check the box for the screen option. The items are:

File Browser

This displays a file browser on the left side of the screen for selecting files

and directories for processing. Files can be loaded into Picard by dragging

and dropping them to the right panes, double clicking on individual files or by

selecting multiple files and folders and selecting “Load selected files” from

the context menu.

Files and directories can also be selected using your system’s file browser

by dragging and dropping them onto the Picard application.

Cover Art

This displays the cover art for the currently selected item (track or release)

in a window to the right of the tags section of the display. This allows you to

select or replace the cover art saved with the release.

Actions

This displays the button bar of the actions performed by Picard, located just

below the menu bar.

Search

This displays the manual search box to the right of the “Actions” button bar.

Player

This displays the built-in player for playing selected audio files.

22

MusicBrainz Picard, Release v2.12

6.2 Action Options

The action options are found under the “Options” item on the menu bar. There are

three available actions that Picard can perform when saving selected music files:

Rename Files

Picard will rename each file in accordance with the naming script.

Move Files

Picard will move files to the target directory in accordance with the naming

script.

Save Tags

Picard will update the metadata tags in the files in accordance with the spec-

ified option settings and tagging scripts.

6.3 Option Settings

The option settings are found under the “Options → Options…” item on the menu bar.

On macOS they can be accessed with “MusicBrainz Picard → Preferences…”. This will

open a new window with the option groups listed in a tree format on the left hand side,

and the individual settings on the right hand side. This is where the majority of Picard’s

customization is performed.

Note: When running your code from the source in a macOS environment, you can

access the option settings by navigating to the “Python → Preferences…” option in

the menu bar. This allows you to configure and customize various settings for your

development environment.

In addition to the basic “user settings”, this is also where option setting changes are

made to individual option profiles. This is covered in greater detail in theOption Profiles

section.

Changes made to a profile’s options settings, enabled status, or position in the profile

stack will be reflected in the option settings displayed on the other pages. Options that

are controlled by an enabled profile will be shown as highlighted. Hovering your cursor

over the highlighted option will identify which profile currently controls the setting.

Settings are always displayed based on the first enabled profile in the profile stack,

which corresponds to the setting that will be used during processing.

6.2. Action Options 23

MusicBrainz Picard, Release v2.12

6.3.1 General Options

Server address

The domain name for the MusicBrainz database server used by Picard to get

details of your music. Default value: musicbrainz.org (for the main Music-

Brainz server).

In addition to the standard MusicBrainz servers provided in the drop down

list, you can manually enter an alternate address, such as “localhost” if you

are running a local copy of the server. When an alternate server host name

is entered, a warning will be displayed and you will be asked to confirm that

you want to submit all data to this alternate server.

24 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

Port

The port number for the server. Default value: 443 (for the main MusicBrainz

server).

Username

Your MusicBrainz website username, used to submit acoustic fingerprints,

retrieve and save items to your collections, and retrieve personal folksonomy

tags.

Password

Your MusicBrainz website password.

Automatically scan all new files

Check this box if you want Picard to scan each music file you add and look

for an AcoustID fingerprint. This takes time, but may be helpful for you and

MusicBrainz. Leave it unchecked if you don’t want Picard to do this scan

automatically. In any case, you can direct Picard to scan a particular music

file at any time using “Tools→ Scan”. See also Scan Files and Understanding

Acoustic Fingerprinting and AcoustIDs.

Automatically cluster all new files

Check this box if you want Picard to automatically group all loaded files into

album clusters. Leave it unchecked if you don’t want Picard to do this auto-

matically. In any case, you can direct Picard to cluster files any time using

“Tools → Cluster”. See also Lookup Files.

Note: You can either enable “Automatically scan all new files” or “Automatically clus-

ter all new files”, but not both.

Ignore MBIDs when loading new files

If you disable this option Picard will not use MusicBrainz identifiers (MBIDs)

stored in the files to automatically load the corresponding MusicBrainz re-

lease and match the loaded file to the correct track. This is useful when

re-processing files that have been previously tagged with incorrect informa-

tion.

6.3. Option Settings 25

MusicBrainz Picard, Release v2.12

Check for plugin updates during start-up

This option determines whether or not Picard will automatically check for

plugin updates during startup. If this is enabled and an update to an installed

plugin is available, a popup message will be displayed.

Check for program updates during start-up

This option determines whether or not Picard will automatically check for

program updates during startup. In any case, you can have Picard check for

program updates at any time using “Help → Check for update”.

Days between checks

This option allows you to limit the automatic program update checking by

selecting the interval, in days, between checks. Set this to 1 if you want to

check daily, 7 for weekly checks, and so on. Note that this only applies if the

“Check for program updates during start-up” option is enabled.

Updates to check

This option allows you to select which levels of program update to check.

Your options are:

• Stable releases only

• Stable and Beta releases

• Stable, Beta and Dev releases

For example, if you subscribe to “Stable releases only” youwill not be notified

if a new Beta or Dev release is issued.

Note: The program update checking related settings and “Help → Check for up-

date…” command may not be available when Picard is distributed as a package. In

that case, the user should check with the maintainer of the package to determine when

an update is available.

26 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

6.3.2 Profile Options

As of version 2.7, Picard supports multiple profiles that can quickly switch between

option settings. This page allows for the management of those user-defined option

profiles.

Initially, the list of profiles will be empty. To create a new profile click on the New

button. This will create a profile with no options selected for the profile to manage.

To rename the profile, right-click on the profile name and select the “Rename profile”

command.

The options that the profile is to manage are selected from the list in the right-hand

pane. Options can be selected either by group or individually. The groups can be

expanded to see the individual options belonging to that group.

The profile stack order can be rearranged either by selecting a profile and using the

up and down arrow buttons below the list, or by dragging the profile to a new position

in the stack. Profiles are enabled when the box beside the profile’s name is checked.

Changes made to a profile’s options settings, enabled status, or position in the profile

stack will be reflected in the option settings displayed on the other pages. Options that

6.3. Option Settings 27

MusicBrainz Picard, Release v2.12

are controlled by an enabled profile will be shown as highlighted. Hovering your cursor

over the highlighted option will identify which profile currently controls the setting.

Settings are always displayed based on the first enabled profile in the profile stack,

which corresponds to the setting that will be used during processing.

Warning: It is important to understand that when you click the Make It So! button

all of the option settings on all pages will be saved. If an option is managed by

one or more profiles that are currently enabled, the option will be highlighted and

it will be saved to the first enabled profile in the profile stack that manages the

option. If there are no enabled profiles that manage the option, the option will not

be highlighted and it will be saved to the “user settings” profile which is the user’s

normal settings, contains all options, is at the bottom of the profile stack, and is

always enabled. The “user settings” profile cannot be modified and is not shown in

the profile management page.

See also:

Please see the Option Profiles section for a detailed explanation of the profile system.

28 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

6.3.3 Metadata Options

Translate artist names to this locale where possible

When checked, Picard will check each of the selected locales in order to see

whether an artist has an alias for that locale. If it does, Picard will use that

alias instead of the artist name when tagging. For example, if you have

selected locales of “English (Canadian)” and “English (US)”, and there are

aliases for “English (US)”, “English” and “Greek”, then the “English (US)”

alias will be used.

Note that Picard will attempt to use the first exact match first. For exam-

ple, if you have selected locales of “English (Canadian)”, “English (US)” and

“Greek, and there are aliases for “English” and “Greek”, then the “Greek”

alias will be used.

6.3. Option Settings 29

MusicBrainz Picard, Release v2.12

If there are no exact matches to any of the selected locales, then Picard

will attempt to find a match based on the root locale. For example, if you

have selected locales of “English (Canadian)”, “English (US)” and “Greek

(Cyprus)”, and there are aliases for “English (UK)” and “Greek”, then the

“English (UK)” alias will be used.

When “English” is the selected locale, the artist sort name (which is, by Style

Guideline, stored in Latin script) is used as a fallback if there is no English

alias.

To select which locales to use, click the Select… button beside the list of

selected locales. This will bring up a new dialog window where you can add,

remove or reorder your list of selected locales.

Once you are satisfied with your selections, click the Save button to transfer

the list to your option settings and close the dialog. Note that the changes

will not be saved permanently until you click the Make It So! button.

Ignore artist name translation for script

Sometimes you may not want to have the artist names translated if they

appear in a certain character set script. When checked, this option will tell

Picard to not perform the artist name translation if it is written using one of

the selected scripts.

Each selected script includes a matching threshold value used to determine

if that script should be used. When an artist name is evaluated to determine

if it matches one of your selected scripts, it is first parsed to determine which

scripts are represented in the name, and what weighted percentage of the

name belongs to each script. Then each of your selected scripts are checked,

and if the name contains characters belonging to the script and the percent-

30 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

age of script characters in the name meets or exceeds the match threshold

specified for the script, then the artist name will not be translated.

For example, if “Translate artist names” is enabled with the locale set to

“English”, and you enable “Ignore artist name translation” with the scripts

set to “Greek (30%)” and “Cyrillic (50%)”, any artist names that contain 30%

Greek characters or 50% Cyrillic characters will not be translated and will

appear in their origin form.

To select which character set scripts to use and their weighting thresholds,

click the Select… button beside the list of selected scripts. This will bring up

a new dialog window where you can add, edit or remove items in your list of

selected scripts.

Once you are satisfied with your selections, click the Save button to transfer

the list to your option settings and close the dialog. Note that the changes

will not be saved permanently until you click the Make It So! button.

Use standardized artist names

Check to only use standard Artist names, rather than Artist Credits which

may differ slightly across tracks and releases.

Note: If the “Translate artist names” option above is also checked, it will

override this option if a suitable alias is found.

Use standardized instrument and vocal credits

Check to only use standard names for instruments and vocals in performer

relationships. Uncheck to use the instruments and vocals as credited in the

6.3. Option Settings 31

MusicBrainz Picard, Release v2.12

relationship.

Convert Unicode punctuation characters to ASCII

Converts Unicode punctuation characters in MusicBrainz data to ASCII for

consistent use of punctuation in tags. For example, right single quotation

marks are converted to ASCII apostrophes (‘), and horizontal ellipses are

converted to three full stops (…).

Use release relationships

Check to retrieve and write release-level relationships (e.g.: URLs, com-

poser, lyricist, performer, conductor, or DJ mixer) to your files. You must

have this enabled to use Picard to retrieve cover art.

Use track relationships

Check to write track-level relationships (e.g.: composer, lyricist, performer,

or remixer) to your files.

Guess track number and title from filename if empty

If checked, Picard will try to guess a file’s track number or title from the

filename if the tracknumber or title tag is empty.

Various artists

Choose how you want the “Various Artists” artist spelled.

Standalone recordings

Choose how you want “Standalone recordings” to be grouped.

Preferred Releases

Preferred Release Types

32 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

Adjust the sliders on the right-hand side of each of the various release types

to tweak how likely Picard is to match a file or cluster to releases of that

types. Moving a slider to the right increases the likelihood of matching that

type, while moving the slider to the left decreases the likelihood.

For example, you can use this to decrease the likelihood of Picard matching

a file or album to a Compilation or Live version.

Preferred Release Countries

Add one or more countries into the list to make Picard prefer matching clus-

ters or files to releases from the chosen countries. This list is also used to

prioritize files in the “Other Releases” context menu.

Preferred Medium Formats

Add one or more formats into the list to make Picard prefer matching clusters

or files to releases of the specified format. This list is also used to prioritize

files in the “Other Releases” context menu.

6.3. Option Settings 33

MusicBrainz Picard, Release v2.12

Genres

Use genres from MusicBrainz

Use genres provided by MusicBrainz and save them to the genre tag.

Fall back on album’s artists genres if no genres are found for the release or

release group

If there is no genre set for the release or release group on MusicBrainz, use

the genre of the album artist instead.

Only use my genres

When enabled, Picard will only write genres you personally have submitted

to MusicBrainz. You’ll need to set your username and password to use this

feature.

Use folksonomy tags as genres

34 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

Check to use all folksonomy tags to set the genre. Otherwise only the tags

considered by MusicBrainz to be proper genres will be used.

Minimal genre usage

Choose how popular the genre must be before it is written by Picard. Default:

90%. Lowering the value here will lead to more, but possibly less relevant,

genres in your files.

Maximum number of genres

Choose how many genres to use. Default: 5. If you only want a single genre,

set this to 1.

Join multiple genres with

Select which character should be used to separate multiple genres.

Genres or folksonomy tags to include or exclude

One expression per line, case-insensitive. You can use the “Playground” text

field to enter some genres and test the rules you have setup. Genres that

will be excluded will be marked red, included genres will be marked green.

• Comments: Lines not starting with ‘-‘ or ‘+’ are ignored. (e.g.:

#comment, !comment or comment)

• Strict filtering: Exclude exact word by prefixing it with ‘-‘ (e.g.: -word).

Include exact word, even if another rule would exclude it, by prefixing it

with ‘+’ (e.g.: +word).

• Wildcard filtering: Exclude all genres ending with “word” (e.g.:

-*word). Include all genres starting with “word” (e.g.: +word*). Exclude

all genres starting with ‘w’ and ending with “rd” (e.g.: -w*rd).

• Regular expressions filtering (Python “re” syntax): Exclude gen-

res starting with ‘w’ followed by any character, then ‘r’ followed by at

least one ‘d’ (e.g.: -/^w.rd+/).

Playground for genres or folksonomy tags filters:

This area allows you to enter genre tags, one per line, to test your filters.

If a tag is marked in red, it will be filtered out. A tag marked green will be

allowed.

Note: This list of test tags will be cleared when you exit the configuration

section.

6.3. Option Settings 35

MusicBrainz Picard, Release v2.12

Ratings

Enable track ratings

Check to write track ratings to your files.

E-mail

The email address used when submitting ratings to MusicBrainz. This iden-

tifies the user that provided the rating.

Submit ratings to MusicBrainz

Check to submit ratings to MusicBrainz. The tracks will be rated with your

account.

36 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

6.3.4 Tag Options

Write tags to files

Uncheck to disable Picard from writing metadata to your files. Picard may

still move or rename your files according to your settings.

Preserve timestamps of tagged files

If checked, Picard will not update the “Last Modified” date and time of your

music files when it writes new tags to them.

Before Tagging

Clear existing tags

Checking this will remove all existing metadata and leave your files with only

MusicBrainz metadata. Information you may have added through another

media player such as “genre”, “comments” or “ratings” will be removed.

Keep embedded images when clearing tags

The default is for Picard to remove any embedded images from the files when

clearing existing tags. Checking this option will keep the embedded images

in the files.

6.3. Option Settings 37

MusicBrainz Picard, Release v2.12

Remove ID3 tags from FLAC files

Check to remove ID3 tags from FLAC files – Vorbis Comments are recom-

mended for FLAC files. Picard will write Vorbis Comments to FLAC files re-

gardless of this setting.

Remove APEv2 tags from MP3 files

Check to remove APEv2 tags from MP3 files – ID3 is recommended for MP3

files. Picard will write ID3 tags to MP3 files regardless of this setting.

Fix missing seekpoints for FLAC files

Some software has issues handling FLAC files that have an empty seek table

metadata block. When this option is enabled empty and hence unused seek

table blocks will be removed from the files on saving.

Preserve these tags from being cleared or overwritten with MusicBrainz data

This is an advanced option: If you have tags which you need to preserve,

enter their names here to stop Picard from overwriting them.

ID3 Files

ID3v2 version

ID3v2.4 is the latest version and the default since Picard 2.9. Most modern

software and devices can read ID3v2.4 tags. If you encounter issues with

tag reading with your music player try using v2.3 instead.

Other than native support for multi-valued tags in v2.4, the Picard Tag Map-

ping section will show you what you lose when choosing v2.3 instead of v2.4.

ID3v2 text encoding

38 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

The default for version 2.4 is UTF-8, the default for version 2.3 is UTF-16.

Use ISO-8859-1 only if you face compatibility issues with your player.

Join ID3v23 tags with

As mentioned above, ID3v2.3 does not support multi-value tags, and so Pi-

card flattens these to strings before saving them to ID3v2.3 tags. This setting

defines the string used to separate the values when flattened. Use ‘; ‘ for

the greatest compatibility (rather than ‘/’ since tags more often contain a ‘/’

than a ‘;’) and for the best visual compatibility in Picard between ID3v2.3

and other tagging formats.

Note: This setting is explicitly only for ID3 v2.3 tags, because those don’t

support proper multi value tags. Hence this separator setting is actually

more of a workaround to this fact.

Because Vorbis tags allow the same tag to exist multiple times, and hence

support multi valued tags by default, there actually is no separator at all

there. It is just multiple values, shown using whatever the player software

uses as a separator.

If for some reason you want all the values of the tag in a single field separated

by some separator you could use a script like:

$set(musicbrainz_artistid,$join(%musicbrainz_artistid%, /))

to flatten all the values into a single field separated by ” / “.

Save iTunes compatible grouping and work

Save the tags grouping and work so that they are compatible with current

iTunes versions. Without this option grouping will be displayed in iTunes as

“work name” and work will not be available.

See the Picard Tag Mapping section for details.

Note: For other players supporting grouping and work you might need to

disable this option. MusicBee is one example of this.

Also include ID3v1 tags in the files

This is not recommended at all. ID3v1.1 tags are obsolete and may not work

with non-latin scripts.

6.3. Option Settings 39

https://getmusicbee.com/

MusicBrainz Picard, Release v2.12

AAC Files

Picard can save APEv2 tags to pure AAC files, which by default do not support tagging.

APEv2 tags in AAC are supported by some players, but players not supporting AAC files

with APEv2 tags can have issues loading and playing those files. To deal with this you

can choose whether to save tags to those files:

Save APEv2 tags

Picard will save APEv2 tags to the files.

Do not save tags

Picard will not save any tags to the files, but you can still use Picard to rename

them. By default existing APEv2 tags will be kept in the file.

Remove APEv2 tags

If you have “Do not save tags” enabled checking this option will cause Picard

to remove existing APEv2 tags from the file on saving.

Regardless of how you have configured saving tags Picard will always read existing

APEv2 tags in AAC files.

40 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

AC3 Files

Picard can save APEv2 tags to pure AC3 files, which by default do not support tagging.

APEv2 tags in AC3 are supported by some players, but players not supporting AC3 files

with APEv2 tags can have issues loading and playing those files. To deal with this you

can choose whether to save tags to those files:

Save APEv2 tags

Picard will save APEv2 tags to the files.

Do not save tags

Picard will not save any tags to the files, but you can still use Picard to rename

them. By default existing APEv2 tags will be kept in the file.

Remove APEv2 tags

If you have “Do not save tags” enabled checking this option will cause Picard

to remove existing APEv2 tags from the file on saving.

Regardless of how you have configured saving tags Picard will always read existing

APEv2 tags in AC3 files.

6.3. Option Settings 41

MusicBrainz Picard, Release v2.12

WAVE Files

WAVE by itself as a standard only supports the INFO chunk tags, which are very limited.

In addition, INFO chunks don’t have any proper support for encoding.

In all cases Picard will write ID3 tags to the WAVE files. This is supported by quite a few

tools; however, it is not supported universally. Tools not supporting ID3 tags should

just ignore them. If possible, this is likely the best option to have proper tags in WAVE

files. For compatibility with software that does not support ID3v2 tags, Picard can also

save Resource Interchange File Format (RIFF) INFO tags to WAVE files. RIFF INFO is

read and written only as an extra. If there are no existing ID3 tags, the data from RIFF

INFO will be used. When saving files, RIFF INFO will be written in addition to the ID3v2

tags.

Picard’s use of the RIFF INFO tags is determined by the following configuration settings:

Also include RIFF INFO tags in the files

Picard will save the RIFF INFO tags to the files.

Remove existing RIFF INFO tags from WAVE files

Picard will remove any existing RIFF INFO tags from the WAVE files. This

setting is ignored if the previous setting is enabled to allow writing the RIFF

INFO tags to the files.

RIFF INFO Text Encoding

This setting allows you to specify the encoding used for the RIFF INFO tags

written. The default setting is Windows-1252 encoding. Picard can also use

UTF-8 as an alternative, which allows for full language support, but it de-

pends on the software reading it. Typically, if the software supports this, it

will read the ID3 tags anyway so there is not much to be gained.

42 Chapter 6. Configuration

https://wikipedia.org/wiki/Resource_Interchange_File_Format

MusicBrainz Picard, Release v2.12

6.3.5 Cover Art Options

Note: You must enable “Options → Metadata → Use release relationships” for Picard

to be able to download cover art from MusicBrainz cover art relationships.

6.3. Option Settings 43

MusicBrainz Picard, Release v2.12

Location

Embed cover images into tags

Enables images to be embedded directly into your music files. While this will

use more storage space than storing it as a separate image file in the same

directory, some music players will only display embedded images and don’t

find the separate files.

Embed only a single front image

Embeds only a single front image into your music files. No other images,

regardless of their type, will be embedded. Many music players will only

display a single embedded image, so embedding additional images may not

add any functionality.

Save cover images as separate files

In the file name mask you can use any variable or function from Picard Tags

and Picard Scripting Functions. The mask should not contain a file extension;

this is added automatically based on the actual image type. The default

value is “cover”. If you change this to “folder”, Windows will display the

image as a preview of the containing directory.

In addition to scripting variables already available for a track, you can use

the following cover art specific variables:

• coverart_maintype: The primary type (e.g.: front, medium, booklet).

For front images this will always be “front”.

• coverart_types: Full list of all types assigned to this image.

• coverart_comment: The cover art comment.

For example, specifying a file naming mask such as:

%albumartist% - %originalyear% - %album% - %coverart_maintype%

will preface the file name with the album artist, original release year and

album title.

You can also have Picard save the images to a subdirectory by including this

in the file naming mask. For example:

Artwork/%albumartist% - %originalyear% - %album% - %coverart_

→˓maintype%

which will place the images in a subdirectory called “Artwork”.

Overwrite the file if it already exists

Check this to replace existing files. This is especially recommended if trying

to write “folder” previews for Windows.

Save only a single front image as separate file

44 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

This tells Picard to only save the first “front” image to a separate file with the

release. No other “front” images or images of any other type will be saved.

If left unchecked, all “front” images will be saved as separate files, along

with any other specified image types to be downloaded.

Always use the primary image type as the file name for non-front images

This setting changes how Picard names image files other than front im-

ages.

When checked, Picard will use the type of the image (e.g.: back, booklet,

etc.) as the filename when saving, as long as the type is not front. If the

image has been assigned multiple types, then the first type will be used. For

example, if the image is of types “back” and “raw”, then “back” will be used

for the filename. If unchecked or if the image is of type “front”, Picard will

use the file name specified in the “Use the following file name for images”

setting.

Cover Art Providers

Picard can download Cover Art from a number of sources, and you can choose which

sources you want Picard to use. You can activate more than one provider and choose

the order in which the providers are queried. Picard will try the providers from top to

bottom until an image is returned.

Cover Art Archive: Release

The Cover Art Archive (CAA) is the MusicBrainz archive of cover art in coop-

eration with the Internet Archive. The Cover Art Archive is the most com-

prehensive database of cover art (e.g.: front covers, back covers, booklets,

CDs).

Cover Art Archive: Release Group

This provider uses the Cover Art Archive cover image assigned to the release

group. This is usually the image that best describes the release group as a

whole or the image with the best visual quality, but is not necessarily the

exact cover of the release you are tagging. This provider is a good choice if

you care more about visual quality then having an exact representation of

your release. It is also a good fallback for the Cover Art Archive provider.

Allowed Cover Art URLs

This will use images provided from approved third-party sites. The image

location is stored as a URL relationship for the release within the MusicBrainz

database, and only approved sites can be used for this relationship.

Note: This relationship type is now deprecated in MusicBrainz, and is no

longer used. See Cover art whitelist in the Style Guide for more information.

6.3. Option Settings 45

https://archive.org
https://wiki.musicbrainz.org/History:Style/Relationships/URLs/Cover_art_whitelist

MusicBrainz Picard, Release v2.12

Local Files

Load cover art from local files. The file names to load can be configured in

the Local Files provider options.

In addition to the built-in cover art providers described above, additional cover art

providers can be installed as plugins.

• Amazon: Amazon often has cover art when other sites don’t, however while this

art is almost always for the correct Artist and Album, it may not be the absolute

correct cover art for the specific Release with which you have tagged your mu-

sic. Note: The Amazon cover art provider was built-in in Picard 2.1.3 and earlier

versions. For later versions it needs to be installed as a separate plugin.

• fanart.tv: Uses cover art from fanart.tv, which focuses on cover art with high vi-

sual quality. This provider provides cover art representative for the release group

and not the individual release.

• TheAudioDB: Uses cover art from TheAudioDB, which focuses on cover art with

high visual quality. This provider provides cover art representative for the release

group and not the individual release.

Cover Art Archive

In this section you can decide which types of cover art you would like to download from

the Cover Art Archive, and what quality (size) you want to download. Obviously, the

better the quality, the larger the size of the files.

Download only cover art images matching the selected types

When selecting the cover art image types, you can select the types to both

include and exclude from the download list. CAA images with an image type

found in the “Include” list will be downloaded and used unless they also have

an image type found in the “Exclude” list. Images with types found in the

“Exclude” list will never be used. Image types not appearing in either the

“Include” or “Exclude” lists will not be considered when determining whether

or not to download and use a CAA image.

Most music players will display only one piece of cover art for the album,

and most people select Front (cover) for that.

Only use images of the following size

46 Chapter 6. Configuration

https://picard.musicbrainz.org/plugins/
https://fanart.tv/
https://www.theaudiodb.com/

MusicBrainz Picard, Release v2.12

This identifies what size of image to download from the CAA. The options are

250px, 500px, 1200px amd full size. The fixed sizes are generated automat-

ically from the full size image, provided that it is greater than or equal to the

fixed size being generated. The generated images are square and padded

as required if the original image is not square.

Note: If the selected size is not available, then Picard will use the largest

available size below the selected size.

Download only approved images

When checked, Picard will only download images that have been approved

(i.e.: the edit to add the image has been accepted and applied). To allow

using images from pending edits, leave this option unchecked.

Note: Since Picard 1.3, you can also decide whether or not to use the image from the

release group (if any) if no front image is found for the release. In this case, the cover

may not match the exact release you are tagging (eg.: a 1979 vinyl front cover may

be used in place of the Deluxe 2010 CD reissue).

Local Files

In this section you can configure the file names to be used by the Local Files cover art

provider. If you are trying to collect more than one image, the naming is important.

The file names are defined using a regular expression. The default is ^(?

:cover|folder|albumart)(.*)\.(?:jpe?g|png|gif|tiff?)$ which will load files

with the name “cover”, “folder” or “albumart” and the file extension “jpg”, “png”,

“gif” or “tiff” (e.g.: “folder.jpg” or “cover.png”).

The first part of the regular expression is a non-capture group: (?

:cover|folder|albumart). Items listed in this group will not get captured and

the default (Front) type will apply.

The second part of the regular expression is a group: (.*). This is the real capture, so

if the file names match any of the cover art types, they will be tagged as such.

6.3. Option Settings 47

MusicBrainz Picard, Release v2.12

Note: A common mistake is to add all the types into the first (non-capture) group.

This means that all the regular file names would be thrown into the Front type and

cause unexpected results.

48 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

6.3.6 File Naming Options

These options determine how Picard handles files when they are saved with updated

metadata.

Move files when saving

If selected, this option tells Picard to move your audio files to a new directory

6.3. Option Settings 49

MusicBrainz Picard, Release v2.12

when it saves them. One use for this is to keep your work organized: all

untagged files are under “Directory A”, and when Picard tags them it moves

them to “Directory B”. When “Directory A” is empty, your tagging work is

done.

If this option is left unchecked, then Picard will leave the files in the same

directory when they are saved.

Note: The “Rename Files” and “Move Files” options are independent of

one another. “Rename Files” refers to Picard changing file names, typically

based on artist and track names. “Move Files” refers to Picard moving files

to new directories, based on a specified parent directory and subdirectories,

typically based on album artist name and release title. However, they both

use the same “file naming string”. “Move files” uses the portion up until the

last ‘/’. “Rename files” uses the portion after the last ‘/’.

Destination directory

This specifies the destination parent directory to which files are moved when

they are saved, if the “Move files when saving” option is selected. If you use

the directory “.” the files will be moved relative to their current location. If

they are already in some sort of directory structure, this will probably not do

what you want!

Move additional files

Enter patterns that match any other files you want Picard to move when

saving music files (e.g.: “Folder.jpg”, “*.png”, “*.cue”, “*.log”). Patterns

support the Unix shell-style wildcards, and are separated by spaces. The

wildcard patterns available are:

Pattern Meaning

* matches everything

? matches any single character

[seq] matches any character in seq

[!seq] matches any character not in seq

For a literal match, wrap the meta-characters in brackets. For example, ‘[?]’

matches the character ‘?’.

When these additional files are moved they will end up in the release direc-

tory with your music files. In a pattern, the ‘*’ character matches zero or

more characters. Other text, like “.jpg”, matches those exact characters.

Thus “*.jpg” matches “cover.jpg”, “liner.jpg”, “a.jpg”, and “.jpg”, but not

“nomatch.jpg2”.

Note: This option can also be used to move subdirectories to the new

release directory. This is done by specifying the name of the subdirectory

50 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

in the list of files to be moved. For example, if your album folders have

a subfolder called “Artwork”, “covers” or “scans” that contains additional

image files that you also want to move to the new release directory, simply

add “artwork”, “covers” and “scans” to the list of additional file matching

patterns.

Delete empty directories

When selected, Picard will remove directories that have become empty once

a move is completed. Leave this unchecked if you want Picard to leave the

source directory structure unchanged. Checking this box may be convenient

if you are using the “move files” option to organize your work. An empty

directory has no more work for you to do, and deleting the directory makes

that clear.

Rename files when saving

Select this option to let Picard change the file and directory names of your

files when it saves them, in order to make the file and directory names con-

sistent with the new metadata.

Selected file naming script

As of Picard version 2.7, multiple file naming scripts are supported. This

option allows the user to select the file naming script to use from the list of

scripts available. Scripts can be either system preset scripts or user-defined

scripts. The available scripts are managed in the File naming script editor

screen, which is displayed when the Edit script… button is selected.

Files will be named like this

Below the file naming script selector is a section showing examples of the

output of the script in two columns: Before and After. If you select files

from the Cluster pane or Album pane prior to opening the Options screen,

up to 10 files will be randomly chosen from your selection as file naming

examples. If you have not selected any files, then some default examples

will be provided.

You can change the randomly selected example files from your selected files

list by clicking on the Reload examples button.

Note: Any new tags set or tags modified by the file naming script will not be written

to the output files’ metadata.

6.3. Option Settings 51

MusicBrainz Picard, Release v2.12

File Naming Script Editor

The file naming script editor is used to manage the file naming scripts available for

use by Picard. Each script has a title that will show up in the script selection box, and

all listed scripts can be edited by the user.

The editor screen has the following sections:

Select the file naming script to use

This option allows the user to select the file naming script to use from the list

of scripts available. The selected script will show up in the editing section,

where it can be modified if required.

Title

The title assigned to the currently selected script. This can be modified if

required.

Script

Below the title is an edit box section containing the formatting string of the

selected script. This tells Picard what the new name of the file and its con-

taining directories should be in terms of various metadata values. The for-

matting string is generally referred to as a “file naming script”, and is in

Picard’s scripting language.

52 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

The script editor automatically highlights the elements of the script, includ-

ing function names and tag and variable names. Hovering your mouse

pointer over one of the highlighted entries will display help information about

the entry if available.

Unicode characters can be entered into the script using the format \uXXXX

where “XXXX” is the hexadecimal value of the unicode character. It is not

recommended to include unicode characters in the directory or filename.

The use of a ‘/’ in the formatting string separates the output directory from

the file name. The formatting string is allowed to contain any number of

‘/’ characters. Everything before the last ‘/’ is the directory location, and

everything after the last ‘/’ becomes the file’s name.

Each file naming script can vary from a simple one-line script such as

%album%/%title% to a very complex script using different file naming for-

mats based on different criteria. In all cases, the files will be saved using the

text output by the script.

Scripts are often discussed in the MetaBrainz Community Forum, and there

is a thread specific to file naming and script snippets. There is also a tutorial

on Writing a File Naming Script available.

Note: Any new tags set or tags modified by the file naming script will not

be written to the output files’ metadata.

Files will be named like this

Below the file naming script is a section showing examples of the output of

the script in two columns: Before and After. If you select files from the Cluster

pane or Album pane prior to opening the Options screen, up to 10 files will be

randomly chosen from your selection as file naming examples. If you have

not selected any files, then some default examples will be provided.

Menu bar

At the top of the screen is a menu bar that provides script management

functions as well as display settings options. The display settings include:

• Word wrap script - This will toggle word wrap on and off in the script edit

box.

• Show help tooltips - This will determine whether or not the information

is displayed when hovering over a highlighted item.

• Show documentation - This will toggle displaying the scripting documen-

tation in a sidebar on the screen.

There is also an option to update the randomly selected example files from

your selected files list.

The script management functionality includes:

6.3. Option Settings 53

https://community.metabrainz.org/
https://community.metabrainz.org/t/repository-for-neat-file-name-string-patterns-and-tagger-script-snippets/2786/

MusicBrainz Picard, Release v2.12

• Import a new script from a file, either as a plain-text script or a Picard

Naming Script Package.

• Export the current script to a file, either as a plain-text script or a Picard

Naming Script Package.

• Add a new (default) script. This can be a blank script or one of the basic

system preset scripts provided by Picard.

• Copy the current script as a new script.

• Delete the current script.

• Reset all scripts, also available via the Reset button.

• Save all changes, also available via the Make It So! button.

• Exit without saving changes, also available via the Cancel button.

Script Metadata

There is also an option to view/edit the metadata details for the current

script. These details include such things as title, author, version, license,

description, and date and time of the last update. It is recommended that

the description include things such as any required plugins, settings, or tag-

ging scripts. This can also be triggered by double clicking the script title text

box.

This information is saved in the Picard Naming Script Package file, and is

included when a script package file is imported.

54 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

File Naming Compatibility Options

These options determine how Picard handles compatibility of files when they are saved

with updated metadata.

Replace non-ASCII characters

Select this option to replace non-ASCII characters with their ASCII equivalent

(e.g.: ‘á’, ‘ä’ and ‘ǎ’ with ‘a’; ‘é’, ‘ě’ and ‘ë’ with ‘e’; ‘æ’ with “ae”). More

information regarding ASCII characters can be found on Wikipedia.

Windows compatibility

This option tells Picard to replace all Windows-incompatible characters with

an underscore. This is enabled by default on Windows systems, with no

option to disable.

As of version 2.9 Picard allows the user to specify what replacement charac-

ters to use as replacements for selected characters.

6.3. Option Settings 55

https://en.wikipedia.org/wiki/ASCII

MusicBrainz Picard, Release v2.12

Allow paths longer than 259 characters

This option allows the user to disable the 259 character path limit Picard

would usually enforce in Windows compatibility mode when renaming and/or

moving files. This is possible both on Windows and on other platforms with

Windows compatibility enabled.

Warning: Enabling long paths on Windows might cause files being

saved with path names exceeding the 259 character limit traditionally

imposed by the Windows API. Some software might not be able to prop-

erly access those files. In particular Windows Explorer cannot rename

files with long path names or create new files inside folders if the result-

ing path length would exceed the length limit.

Replace spaces with underscores

When enabled, this option directs Picard to replace all spaces with under-

scores in the file path and name generated by the selected file naming script.

Replace directory separators with

By default Picard will replace any path separators (slash or backslash) with

an underscore when using a tag or variable value as part of the file path and

name generated by the selected file naming script. This option allows the

user to set a different replacement character other than the underscore.

56 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

6.3.7 Fingerprinting Options

If you select a file or cluster in the left-hand side of the Picard screen and select “Tools

→ Scan”, Picard will invoke a program to scan the files and produce a fingerprint for

each that can then be used to look up the file on MusicBrainz.

MusicBrainz currently supports only AcoustID (an Open Source acoustic fingerprinting

system created by Lukáš Lalinský) but has previously supported TRM andMusicID PUID.

Audio Fingerprinting

This allows you to select whether or not to enable acoustic fingerprinting

within Picard. If acoustic fingerprinting is disabled then all remaining options

in this tab will be locked and ignored.

Ignore existing AcoustID fingerprints

When checked, any existing AcoustID fingerprint information will not be

used, and the files will be rescanned.

Save AcoustID fingerprints to file tags

When checked, the AcoustID fingerprint information from scanned files will

be saved to the acoustid_fingerprint tag. Note that this option is disabled

by default because the fingerprint can always be calculated again from the

6.3. Option Settings 57

https://musicbrainz.org/doc/AcoustID
https://musicbrainz.org/doc/Fingerprinting
https://oxygene.sk/

MusicBrainz Picard, Release v2.12

audio file, and it can add a rather long data tag to the file. The option to

save this information has been added as of Picard v2.7 to accommodate use

cases such as a workflow where the user adds this tag directly after ripping

to avoid having to redo the calculation in the future.

Maximum threads to use for calculator

This allows you to specify the maximum number of fingerprint calculations

to be run concurrently. The default value is 2.

Fingerprint calculator

This identifies the external program on your system that will be used to cal-

culate the AcoustID fingerprints. By default, Picard uses the Chromaprint

(fpcalc) utility which is included with the Picard installation.

Picard will auto-detect the path unless you have specifically overwritten it

with something different than the detected path. “Options→ Fingerprinting”

will show the auto detected path as a placeholder hint in the text input, and

also uses it for validating the executable. The user only needs to actually

select something if auto detection does not work. If the user has selected a

specific path this will be used.

API key

The key used to access the AcoustID API to lookup and submit AcoustID fin-

gerprints. There is no cost to obtain an API key.

6.3.8 CD Lookup Options

This section allows you to select which CD ROM device to use by default for looking up

a CD.

On Windows and Linux systems, you can override this setting by clicking on “Tools →
Lookup CD…” and selecting the desired device from the list of available devices.

Windows

On Windows, Picard has a pulldown menu listing the various CD drives it has found.

Pull down the menu and select the drive you want to use by default.

58 Chapter 6. Configuration

https://acoustid.org/chromaprint

MusicBrainz Picard, Release v2.12

You can override this setting by clicking on “Tools → Lookup CD…” and selecting the

desired device from the list of available devices.

macOS

In macOS, the CD Lookup option is currently a text field. The device is usually /dev/

rdisk1.

If that doesn’t work, one way is to simply keep increasing the number (e.g. /dev/

rdisk2) until it does work. A less trial and error method is to open “Terminal” and type

mount. The output should include a line such as:

/dev/disk2 on /Volumes/Audio CD (local, nodev, nosuid, read-only)

You need to replace /dev/disk with /dev/rdisk, so if, for example, it says /dev/

disk2, you should enter /dev/rdisk2 in Picard’s preferences.

Linux

In Linux, Picard has a pulldown menu like in Windows for the CD Lookup option. If

you’re using an older version of Picard with a text field, you should enter the device

name (typically /dev/cdrom).

You can override this setting by clicking on “Tools → Lookup CD…” and selecting the

desired device from the list of available devices.

Other platforms

On other platforms, the CD Lookup option is a text field and you should enter the path

to the CD drive here.

6.3. Option Settings 59

MusicBrainz Picard, Release v2.12

6.3.9 Plugins Options

60 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

This section allows you to manage the plugins used by Picard. You can install new plu-

gins or enable, disable or uninstall plugins that are currently installed. Picard provides

a list of plugins that have been submitted to the project. A list of the standard plugins

is available on the plugins page on the Picard website.

There are also a number of plugins available by third-party developers. Often these

are discussed on the Community Discussion Forum so if you’re looking for a particular

enhancement or functionality, a search there might be useful. In addition, one of the

MusicBrainz editors, Colby Ray maintains an unofficial list of available plugins on a

wiki page. Instructions regarding installation of third-party plugins are included in the

“Installing Third-Party Plugins” section below.

Plugins List

The screen displays a list of the standard plugins and any others that have been in-

stalled. Each plugin is displayed on a separate line showing the version number and

one or more status / action icons. The icons are:

This icon indicates that the plugin is not installed. Clicking the icon will

download and install the plugin.

This icon indicates that a newer version of the plugin is available. Clicking

the icon will download and install the updated version.

This icon indicates that the plugin is installed and currently enabled.

Clicking the icon will disable the plugin, but it will still be installed.

This icon indicates that the plugin is installed but currently disabled.

Clicking the icon will enable the plugin.

This icon indicates that the plugin is currently installed. Clicking the icon

will uninstall the plugin.

6.3. Option Settings 61

https://picard.musicbrainz.org/plugins/
https://community.metabrainz.org/
https://wiki.musicbrainz.org/User:Colbydray
https://wiki.musicbrainz.org/User:Colbydray/PicardPlugins

MusicBrainz Picard, Release v2.12

When a plugin in the list is selected (i.e.: highlighted), a brief description of the plugin

will be shown in the “Details” section below the list.

62 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

Note: Some plugins have their own option page which will typically appear under the

“Plugins” section of the Options.

Installing Third-Party Plugins

You can install a third-party plugin that does not appear in the plugins list, using the

following steps:

1. Download the plugin and save it to a local drive.

2. Select the Install plugin… action, located just below the list of plugins.

3. Navigate to the file you downloaded in Step 1 and select it. The file will be copied

to the plugin folder, and will appear in the list of plugins.

4. Enable the plugin if desired, and select theMake It So! action button at the bottom

of the window.

6.3. Option Settings 63

MusicBrainz Picard, Release v2.12

6.3.10 User Interface Options

Show text labels under icon

If this option is disabled, the text labels under the icons in the toolbar will

not be displayed, causing the toolbar to appear a little smaller.

Show icons in menus

Some users prefer to disable menu icons, which is the default behavior for

macOS systems. This option allows the user to select whether the icons are

displayed in the menus.

64 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

User interface language

By default, Picard will display in the language displayed by your operating

system, however you can override this and select a different language if

needed.

User interface color theme

This option allows the user to select the color theme used by Picard. On

macOS and Windows systems, the available choices are:

• Default - The default color scheme based on the operating system dis-

play settings.

• Light - A light display theme.

• Dark - A dark display theme.

On Linux and similar operating systems, the available choices are:

• Default - The default color scheme based on the operating system dis-

play settings.

• System - The Qt5 theme configured in the desktop environment.

Note: The colors for the light and dark themes can be customized in the

Colors section. Separate sets of color selections are maintained for the light

and dark themes. The colors for the currently displayed theme are the ones

displayed for editing.

Allow selection of multiple directories

Enabling this option will bypass the native directory selector and use Qt’s file

dialog. This may be desirable since the native directory selector generally

doesn’t allow you to select more than one directory. This applies to the

“File → Add folder” dialog. The file browser always allows multiple directory

selection.

Warning: When enabling the multiple directories option setting Picard

will no longer use the system file picker for selecting directories. This may

result in reduced functionality.

Use built-in search rather than looking in browser

When this option is enabled the search for albums, artists or tracks will show

the results in a dialog. By default this option is enabled. If this option is

disabled Picard will open a search on MusicBrainz.org in your default web

browser.

Use advanced query syntax

6.3. Option Settings 65

MusicBrainz Picard, Release v2.12

This will enable advanced query syntax parsing on your searches. This only

applies to the search box at the top right of Picard, not the lookup buttons.

Show the new user dialog when starting Picard

When this is enabled, Picard will show a dialog intended for new users when

you start the program. This displays a warning about the consequences

of saving files, along with a suggestion for minimizing the impact until you

have confirmed that your configuration produces the expected results. It

also provides a link to the on-line documentation.

Show a quit confirmation dialog for unsaved changes

When this is enabled, Picard will show a dialog when you try to quit the pro-

gram with unsaved files loaded. This may help prevent accidentally losing

tag changes you’ve made, but not yet saved.

Show a confirmation dialog when saving files

When this is enabled, Picard will show a dialog when you save files, indicating

what actions will be performed on the files and the number of files to be

saved. This may help prevent accidentally making changes that you are not

expecting.

Adjust horizontal position in file browser automatically

When this is enabled, Picard will automatically scroll the file browser display

to keep relevant content visible.

Begin browsing in the following directory

By default, Picard remembers the last directory used to load files. If you

enable this option and provide a directory, Picard will always start in the

directory provided.

66 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

Colors

This section allows you to customize the various colors used in the Picard user inter-

face. To change a color, simply click on the color block currently displayed for the

desired text condition to bring up a selection dialog, then pick your desired color. The

colors can be changed for the following text conditions:

• Errored entity: files and other elements with errors on loading or saving

• Pending entity: files and other elements queued up for processing

• Saved entity: successfully saved files

• Log view text (debug): debug messages in the Error/Debug Log

• Log view text (error): error messages in the Error/Debug Log

• Log view text (info): informational messages in the Error/Debug Log

• Log view text (warning): warning messages in the Error/Debug Log

• Tag added: newly added tags in the metadata pane

• Tag changed: changed tags in the metadata pane

• Tag removed: removed tags in the metadata pane

6.3. Option Settings 67

MusicBrainz Picard, Release v2.12

Note: Separate sets of color selections are maintained for the light and dark themes.

The colors for the currently displayed theme are the ones displayed for editing.

Top Tags

The tags specified in this option setting will always be shown in the specified order at

the top of the metadata pane (which shows the metadata of selected files or tracks).

This allows you to have the most important tags always on top of the list. Tags not

listed here will be shown in alphabetical order below the top tags.

Note: By default, Picard will display the top tags configured here first in the list. If

you right click on one of the tags in the metadata pane, and enable “Show Changes

First” in the context menu, the tags with changes will always be displayed first in the

list, followed by the remaining top tags and other tags.

68 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

6.3. Option Settings 69

MusicBrainz Picard, Release v2.12

Toolbar

Customize Action Toolbar

This allows you to to add, remove or rearrange the items displayed in the

Action Toolbar.

Items that can be included in the toolbar include:

70 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

• Add Files

• Add Folder

• Cluster

• Generate Fingerprints

• Info

• Lookup

• Lookup CD…

• Lookup in Browser

• Open in Player

• Parse File Names…

• Remove

• Save

• Scan

• Submit AcoustIDs

In addition, separators can be added to allow grouping of items.

6.3. Option Settings 71

MusicBrainz Picard, Release v2.12

6.3.11 Scripting Options

This section allows for the management of user-defined tagging scripts.

The “Enable Tagger Script(s)” checkbox at the top of the page allows you to completely

disable all tagging scripts. This can be useful when tracking down a problem with

Picard’s configuration.

Below the checkbox are two columns showing the list of scripts in the left-hand column,

with the content of the selected script shown in the right-hand column. This section

allows you to add, remove and reorder the scripts, enable or disable individual scripts,

as well as edit the currently selected script.

As of Picard v2.7 you can also import a new script from a file, or export an existing

script to a file. Files can be stored as either a plain-text script or a Picard Tagging

Script Package stored in YAML format.

The script editor automatically highlights the elements of the script, including function

names and tag and variable names. Hovering your mouse pointer over one of the

highlighted entries will display help information about the entry if available.

Unicode characters can be entered into the script using the format \uXXXX where

“XXXX” is the hexadecimal value of the unicode character.

When the checkbox beside the script is checked, that script will be executed automati-

cally, once for each track in the release, when Picard retrieves information for a release

72 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

from the MusicBrainz website. If the checkbox is left unchecked, then the script will

not be executed automatically.

Regardless of whether or not the script is executed automatically, it can also be ex-

ecuted manually by right-clicking on an item in the clustering pane (middle pane) or

the tagging pane (right-hand pane) and selecting it from the list displayed when “Run

Scripts” is selected. If a cluster is selected in the middle pane or a release is selected

in the right-hand pane, the script will be executed for each track in the selected cluster

or release. If only a single track or file is selected, then the script will only be executed

for that track or file.

For additional information about scripting please see the “Scripts” and “Scripting” sec-

tions, as well as “Tags & Variables”.

6.3. Option Settings 73

MusicBrainz Picard, Release v2.12

6.3.12 Advanced Options

Ignore file paths matching the following regular expression

You can specify patterns for files and directories that Picard should never

load. For example, if you set this to the regular expression \.bak$ any file

ending in “.bak” will be ignored when loading files.

Ignore hidden files

If this option is enabled then hidden files and directories will not be loaded.

This also includes any file or subdirectory inside a hidden directory.

74 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

Include sub-folders when adding files from folders

If this option is enabled Picard will load all audio files in the selected directory

and all its subdirectories. If disabled only audio files in the selected directory

will be loaded.

Ignore track duration difference under this number of seconds

This specifies the number of seconds that a file can differ in length from the

length in the MusicBrainz database and still be considered to be the same.

The default value is 2 seconds.

Maximum number of entities to return per MusicBrainz query

This sets the maximum number of results returned for queries made to the

MusicBrainz website. The default value is 50 results. On Picard v2.8.1 and

earlier, this value was fixed at a maximum of 25 responses.

Ignore the following tracks when determining whether a release is complete

Missing tracks of the selected type (i.e.: video, pregap, data or silence) will

be ignored when determining whether a release is considered to be com-

plete. For example, if “video” is selected then a release with a bonus video

will be marked as complete if it has all the audio tracks matched with a file

even if the video file is missing.

Tags to ignore for comparison

Tags in this list will not be considered when comparing the existing file meta-

data to the data retrieved from MusicBrainz. If the only difference between

the file’s metadata and the metadata retrieved from MusicBrainz is a tag

listed in this ignore list then the file will be considered unmodified.

6.3. Option Settings 75

MusicBrainz Picard, Release v2.12

Network

Web Proxy

If you need a proxy to make an outside network connection you may specify

one here. You can choose between HTTP and SOCKS proxy. The required

settings are Server Address and Port. If the proxy requires authentication

also enter Username and Password.

Request timeout in seconds

By default Picard will abort running network requests after 30 seconds of

inactivity. If needed you can change the timeout period here.

Browser Integration

The browser integration allows you to load releases and recordings into Pi-

card directly from the MusicBrainz website. Once you have opened music-

brainz.org in your browser from Picard, the website will show the green tag-

ger button next to releases and recordings. Clicking on this button

will load the corresponding release or recording into Picard.

Default listening port

This identifies the default port Picard will listen on for the browser integration.

If the port is not available Picard will try to increase the port number by one

until it finds a free port.

76 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

Listen only on localhost

By default Picard will limit access to the browser integration port to your

local machine. Deactivating this option will expose the port on your network,

allowing you to request Picard to load a specific release or recording via the

network. For example, this would be used for the Picard Barcode Scanner

Android app.

Warning: Only expose the port externally when you actually need it and

only on networks you trust. Exposing application ports via the network

can open potential security holes on your system.

Matching

It is recommended for most users to leave these settings at their default values. For

advanced users, these allow you to tune the way Picard matches your files and clusters

to MusicBrainz releases and tracks.

Minimal similarity for file lookups

The higher the percentage value, the more similar an individual file’s meta-

data must be to the metadata from MusicBrainz for it to be matched to a

release on the right-hand side.

This setting is used when you do a lookup on individual files. The files’ meta-

data is compared to the recordings found on MusicBrainz. If the similarity is

below the threshold the recording is ignored completely.

Minimal similarity for cluster lookups

The higher the percentage value, the more similar a cluster of files from the

left-hand pane must be to a MusicBrainz release for the entire cluster to be

matched to a release on the right-hand side.

Minimal similarity for matching files to tracks

The higher the percentage value, the more similar an individual file’s meta-

data must be to the metadata from MusicBrainz for it to be matched to a

release on the right-hand side.

6.3. Option Settings 77

https://play.google.com/store/apps/details?id=org.musicbrainz.picard.barcodescanner

MusicBrainz Picard, Release v2.12

This setting is used when a file is assigned to a release and Picard needs to

decide which track to assign it to. This happens on cluster lookup after the

release has been chosen, or if you manually drag files onto a loaded release

(as opposed to dragging it onto a track directly). If none of the tracks gives

a match above the threshold the file is moved into an “unmatched files”

section on that release.

If you have absolutely no metadata in your current files, and you are using “Scan” to

match tracks, you may find that you need to lower the value of “Minimal similarity

for matching files to tracks” in order for Picard to match the files within a release.

Otherwise you may find that Picard matches the track to a release but then is not sure

which track is correct; and leaves it in an “unmatched files” group within that release.

As a general rule, lowering the percentagesmay increase the chance of finding amatch

at the risk of false positives and incorrect matches.

78 Chapter 6. Configuration

MusicBrainz Picard, Release v2.12

Maintenance

6.3. Option Settings 79

MusicBrainz Picard, Release v2.12

Configuration File

This displays the path and file name of the configuration file currently used

by Picard. This file contains all of your settings and preferences, and the

format of the file is consistent across operating systems.

The Save Backup button allows you to create a backup copy of the current

configuration file. This can be used to easily copy the settings for use on a

different computer, or to provide a snapshot for easy recovery in the event

that the configuration becomes corrupted or you want to undo configuration

changes. It also allows you to have different configurations available without

using profiles.

The Load Backup button allows you to replace the current configuration file

with a backup created earlier. Loading a backup configuration file will replace

all of the current configuration settings. Prior to loading the file, Picard will

automatically save a backup copy of the current file.

Configuration File Cleanup

Over the course of trying out plugins and such, the configuration file can

become bloated with orphaned settings. This section allows you to remove

unused option settings from the configuration file.

Settings that are found in the configuration file that do not appear on any

option settings page will be listed. If your configuration file does not con-

tain any unused option settings, then the list will be empty and the removal

checkbox will be disabled.

To remove one or more settings, first enable the removal by checking the

“Remove selected options” box. You can then select the settings to remove

by checking the box next to the setting. When you choose Make It So! to

save your option settings, the selected items will be removed.

Note: Unused option settings could come from plugins that have been

uninstalled, so please be careful to not remove settings that you may want

to use later when the plugin is reinstalled. Options belonging to plugins that

are installed but currently disabled will not be listed for possible removal.

80 Chapter 6. Configuration

CHAPTER

SEVEN

TAGS & VARIABLES

This describes both Tags which are saved inside your music files and can be read by

your music player, and Picard variables which can be used in Picard scripts for tagging,

file renaming, and in several other more minor settings.

All tags are also available as variables, but additional variables which start with an

underscore ‘_’ are not saved as Tags within your music files (e.g. _my_tag_not_saved).

Variables are used in scripts by wrapping the name between percent ‘%’ characters

(e.g. %title%).

Some variables can contain more than one value (e.g. musicbrainz_artistid), and

if you want to use only one of the values then you will need to use special script

functions to access or set them. To access all the multiple values at once, use the

variable normally and Picard will combine them into a single string separated by a

semicolon and space (e.g.: “Item 1; Item 2; Item 3”).

If a tag description indicates a later version of Picard than the current official version

on the downloads page, then the tag is beta functionality which will be available in

the next official release. A description of how to gain access to these beta versions for

testing can be found on the Picard downloads page on the website.

7.1 Basic Tags

The following tags are supported and are written in the standard format that can be

read by other software. The information is populated from MusicBrainz data for most

releases, without any special Picard settings. Note that some of the information such

as ‘lyrics’ is not contained within the MusicBrainz database, and will not be provided

automatically.

All of these are also available as variables for use in Picard Scripts (for tagging, for

file renaming and in several other more minor settings) by wrapping them between

percent ‘%’ symbols (e.g. %title%).

Some tags provide the MusicBrainz Identifier (MBID) of the entity. The MBID is a

32-character identifier assigned to an entity (e.g.: artist, album, track or work) to

uniquely identify the entity. For more information about MBIDs, please see the Music-

Brainz Identifier page in the MusicBrainz documentation.

81

https://picard.musicbrainz.org/downloads/
https://musicbrainz.org/doc/MusicBrainz_Identifier
https://musicbrainz.org/doc/MusicBrainz_Identifier

MusicBrainz Picard, Release v2.12

Note: Tags will not be created and will not be available as variables if there was no

value retrieved for the tag from the MusicBrainz database.

Note: Some of these tags are only supported for certain file types or tag formats.

Please see the Picard Tag Mapping section for details.

7.1.1 Tags Provided from MusicBrainz Data

These tags will be provided based on the information from the MusicBrainz database

and will be populated automatically by Picard if the information is available.

album

The title of the release.

albumartist

The artists primarily credited on the release, separated by the specified join

phrases. These could be either “standardized” or “as credited” depending

on whether the “Use standardized artist names” metadata option is enabled.

albumartistsort

The release artists sort names, separated by the specified join phrases. (e.g.:

“Beatles, The”)

artist

The track artist names, separated by the specified join phrases. These could

be either “standardized” or “as credited” depending on whether the “Use

standardized artist names” metadata option is enabled.

artists

A multi-value tag containing the track artist names. These could be either

“standardized” or “as credited” depending on whether the “Use standard-

ized artist names” metadata option is enabled. (since Picard 1.3)

artistsort

The track artists sort names, separated by the specified join phrases.

asin

The Amazon Standard Identification Number - the number identifying the

item on Amazon.

barcode

The barcode assigned to the release.

catalognumber

82 Chapter 7. Tags & Variables

MusicBrainz Picard, Release v2.12

A multi-value tag contining the numbers assigned to the release by the la-

bels, which can often be found on the spine or near the barcode. There may

be more than one, especially when multiple labels are involved.

comment

The disambiguation comment entered to help distinguish one release from

another (e.g.: Deluxe version with 2 bonus tracks). This is not populated by

stock Picard. It may be used and populated by certain plugins. Picard stores

this information in the _releasecomment variable.

compilation

1 for Various Artist albums, otherwise empty. (since Picard 1.3, compatible

with iTunes)

1 if multiple track artists (including featured artists), otherwise 0. (Picard

1.2 or previous)

date

The date that the release (album) was issued, in the format YYYY-MM-DD.

discnumber

The number of the disc in the release that contains this track.

discsubtitle

The media title given to a specific disc in the release.

isrc

The International Standard Recording Code - an international standard code

for uniquely identifying sound recordings and music video recordings. See

Wikipedia for more information. (since Picard 0.12)

label

A multi-value tag containing the names of the labels associated with the

release.

media

The media on which the release was distributed (e.g.: CD). See the Release

Format page on the MusicBrainz website for more information.

musicbrainz_albumartistid

A multi-value tag containing the MBIDs for the release artists.

musicbrainz_albumid

The MBID for the release.

musicbrainz_artistid

A multi-value tag containing the MBIDs for the track artists.

musicbrainz_discid

7.1. Basic Tags 83

https://en.wikipedia.org/wiki/International_Standard_Recording_Code
https://musicbrainz.org/doc/Release/Format
https://musicbrainz.org/doc/Release/Format

MusicBrainz Picard, Release v2.12

The Disc ID is the code number which MusicBrainz uses to link a physical CD

to a release listing. This is based on the table of contents (TOC) information

read from the disc. This tag contains the Disc ID if the album information

was retrieved using “Tools → Lookup CD”. (since Picard 0.12)

musicbrainz_originalalbumid

The MBID for the original release. This is only available if the release has

been merged with another release.

musicbrainz_originalartistid

A multi-value tag containing the MBIDs for the track artists of the original

recording. This is only available if the recording has been merged with an-

other recording.

musicbrainz_recordingid

The MBID for the recording.

musicbrainz_releasegroupid

The MBID for the release group.

musicbrainz_trackid

The MBID for the track.

originaldate

The original release date in the format YYYY-MM-DD. By default this is set

to the earliest release in the release group. This can provide, for example,

the release date of the vinyl version of what you have on CD. (Included as

standard from Picard 0.15, and using the Original Release Date plugin if you

are still using a non-NGS version earlier than Picard 0.15)

Note: This is the same information provided in the

_releasegroup_firstreleasedate variable, and is consistent across all

tracks in the release. If you prefer to have this tag populated with the date of

the earliest recording of the track in the database, which will likely be differ-

ent for each track in the release, this can be achieved by enabling a one-line

tagging script as $set(originaldate,%_recording_firstreleasedate%).

Be aware that setting this can cause a release to be scattered across

multiple directories if you use %originaldate% as part of the path portion

of your file naming script.

Note: If you are storing tags in MP3 files as ID3v2.3 then the original date

can only be stored as a year.

originalyear

84 Chapter 7. Tags & Variables

MusicBrainz Picard, Release v2.12

The year of the original release date in the format YYYY. By default this is set

to the earliest release in the release group. This can provide, for example,

the release year of the vinyl version of what you have on CD.

releasecountry

The two-character code for the country in which the release was issued. If

more than one release country was specified, this tag will contain the first

one in the list.

releasestatus

An indicator of the “official” status of the release. Possible values include

official, promotional, bootleg, and pseudo-release.

releasetype

A multi-value tag containing the types of release assigned to the release

group. See also _primaryreleasetype and _secondaryreleasetype.

script

The script used to write the release’s track list. The possible values are taken

from the ISO 15924 standard. (since Picard 0.10)

title

The title of the track.

totaldiscs

The total number of discs in this release.

totaltracks

The total number of tracks on this disc.

tracknumber

The number of the track on the disc.

website

The official website for the artist.

7.1.2 Tags Not Provided from MusicBrainz Data

These tags are not able to be populated by stock Picard, however they may be used

and populated by certain plugins or scripts.

acoustid_fingerprint

The Acoustic Fingerprint for the track. The fingerprint is based on the audio

information found in a file, and is calculated using the Chromaprint software.

acoustid_id

7.1. Basic Tags 85

https://en.wikipedia.org/wiki/ISO_15924
https://acoustid.org/chromaprint

MusicBrainz Picard, Release v2.12

The AcoustID associated with the track. The AcoustID is the identifier as-

signed to an audio file based on its acoustic fingerprint. Multiple fingerprints

may be assigned the same AcoustID if the fingerprints are similar enough.

See the section on Understanding Acoustic Fingerprinting and AcoustIDs for

more information.

albumsort

The sort name of the title of the release.

bpm

The number of beats per minute of the track.

copyright

The copyright message for the copyright holder of the original sound, begin-

ning with a year and a space character.

encodedby

The person or organization that encoded the track.

encodersettings

The settings used when encoding the track.

key

The key of the music.

lyrics

The lyrics for the track.

musicip_fingerprint

The MusicIP Fingerprint for the track.

musicip_puid

The MusicIP PUIDs associated with the track.

originalalbum

The release title of the earliest release in the release group intended for the

title of the original recording.

originalartist

The track artist of the earliest release in the release group intended for the

performers of the original recording.

originalfilename

The original name of the audio file.

releasedate

86 Chapter 7. Tags & Variables

MusicBrainz Picard, Release v2.12

Explicit tag for the release date (since Picard 2.9). This tag exists for specific

use in scripts and plugins, but is not filled by default. In most cases it is

recommended to use the date tag instead for compatibility with existing

software.

showmovement

The work and movement of the track.

subtitle

This is used for information directly related to the contents title.

titlesort

The sort name of the track title.

7.1.3 iTunes-Specific Tags

These tags are only available in iTunes files and are not able to be populated by stock

Picard, however they may be used and populated by certain plugins or scripts.

gapless

Indicates whether or not there are gaps between the recordings on the re-

lease.

podcast

Indicates whether or not the recording is a podcast.

podcasturl

The associated url if the recording is a podcast.

show

The name of the show if the recording is associated with a television pro-

gram.

showsort

The sort name of the show if the recording is associated with a television

program.

7.2 Advanced Tags

You can make additional tags available by enabling the Use track relationships and/or

the Use genres from MusicBrainz settings in Picard.

Some tags provide the MusicBrainz Identifier (MBID) of the entity. The MBID is a

32-character identifier assigned to an entity (e.g.: artist, album, track or work) to

uniquely identify the entity. For more information about MBIDs, please see the Music-

Brainz Identifier page in the MusicBrainz documentation.

7.2. Advanced Tags 87

https://musicbrainz.org/doc/MusicBrainz_Identifier
https://musicbrainz.org/doc/MusicBrainz_Identifier

MusicBrainz Picard, Release v2.12

Note: Tags will not be created and will not be available as variables if there was no

value retrieved for the tag from the MusicBrainz database.

Note: Some of these tags are only supported for certain file types or tag formats.

Please see the Picard Tag Mapping section for details.

7.2.1 Track Relationship Tags

If you enable “Use track relationships” in the Option settings, you get these extra tags:

arranger

The names of the arrangers associated with the track. These can include

the instrument and orchestra arrangers, and could be associated with the

release, recording or work. (since Picard 0.10)

composer

The names of the composers for the associated work.

composersort

The sort names of the composers for the associated work.

conductor

The names of the conductors associated with the track. These can include

the conductor and chorus master, and could be associated with the release

or recording.

director

The director of a track as provided by the Video Director or Audio Director

relationship in MusicBrainz. (Since Picard 2.6, updated in Picard 2.9)

djmixer

The names of the DJ mixers for the track. (since Picard 0.9)

engineer

The names of the engineers associated with the track.

language

Work lyric language as per ISO 639-3 if a related work exists. (since Picard

0.10)

license

The licenses associated with the track, either through the release or record-

ing relationships. (since Picard 1.0)

88 Chapter 7. Tags & Variables

https://en.wikipedia.org/wiki/ISO_639-3

MusicBrainz Picard, Release v2.12

lyricist

The names of the lyricists for the associated work.

mixer

The names of the “Mixed By” engineers associated with the track. (since

Picard 0.9)

musicbrainz_workid

The MBID for the Work if a related work exists.

performer:<type>

The names of the performers for the specified type. These types include:

• vocals or instruments for the associated release or recording, where

<type> can be “vocal”, “guest guitar”, “solo violin”, etc.

• the orchestra for the associated release or recording, where <type> is

“orchestra”

• the concert master for the associated release or recording, where

<type> is “concertmaster”

producer

The names of the producers for the associated release or recording.

remixer

The names of the remixer engineers associated with the track.

work

The name of the work associated with the track. (since Picard 1.3)

writer

A multi-value tag containing the names of the writers associated with the

related work. (since Picard 1.0). This is not written to most file formats

automatically. You can merge this with composers with a script like:

$copymerge(composer, writer)

Note: Some tags such as performer are available as both track and release level

relationships, and the values may be different depending on which relationship options

are enabled.

7.2. Advanced Tags 89

MusicBrainz Picard, Release v2.12

7.2.2 Genre Tags

If you enable “Use genres from MusicBrainz”, you get:

genre

A multi-value tag containing the specified genre information from Music-

Brainz (since Picard 2.1, earlier versions used folksonomy tags)

7.3 Basic Variables

These variables are populated from MusicBrainz data for most releases, without any

special Picard settings.

Some variables provide the MusicBrainz Identifier (MBID) of the entity. The MBID is

a 32-character identifier assigned to an entity (e.g.: artist, album, track or work) to

uniquely identify the entity. For more information about MBIDs, please see the Music-

Brainz Identifier page in the MusicBrainz documentation.

Note: Variables will not be created if there was no value retrieved for the variable

from the MusicBrainz database.

_absolutetracknumber

The absolute number of this track disregarding the disc number (i.e.:

%_absolutetracknumber% of %_totalalbumtracks%). For example, this

value would be 11 for the second track on disc 2 where disc 1 has 9 tracks.

(since Picard 1.3)

_albumartists

A multi-value variable containing the names of the album’s artists. These

could be either “standardized” or “as credited” depending on whether the

“Use standardized artist names” metadata option is enabled. (since Picard

1.3)

_albumartists_sort

A multi-value variable containing the sort names of the album’s artists.

(since Picard 1.3)

_artists_sort

A multi-value variable containing the sort names of the track’s artists. (since

Picard 1.3)

_datatrack

Set to 1 if the track is a “data track”, otherwise empty. (since Picard 1.3.1)

_discpregap

90 Chapter 7. Tags & Variables

https://musicbrainz.org/doc/MusicBrainz_Identifier
https://musicbrainz.org/doc/MusicBrainz_Identifier
https://wiki.musicbrainz.org/Style/Unknown_and_untitled/Special_purpose_track_title#Data_tracks

MusicBrainz Picard, Release v2.12

Set to 1 if the disc the track is on has a “pregap track”, otherwise empty.

(since Picard 1.4)

_multiartist

Set to 1 if not all of the tracks on the album have the same primary artist,

otherwise empty. (since Picard 1.3)

_musicbrainz_discids

A multi-value variable containing a list of all of the disc ids attached to the

selected release. The list provided for each medium only includes the disc

ids attached to that medium. For example, the list provided for Disc 1 of a

three CD set will not include the disc ids attached to discs 2 and 3 of the set.

_musicbrainz_tracknumber

The track number written as on the MusicBrainz release, such as vinyl num-

bering (A1, A2…).

_pregap

Set to 1 if the track is a “pregap track”, otherwise empty. (since Picard 1.3.1)

_primaryreleasetype

The primary type of the release group (i.e.: album, single, ep, broadcast, or

other).

_rating

The rating of the track from 0-5 by MusicBrainz users.

_recordingcomment

The disambiguation comment for the recording associated with a track.

(since Picard 0.15)

_recording_firstreleasedate

The date of the earliest recording for a track in the format YYYY-MM-DD.

(Since Picard 2.6)

_releaseannotation

The annotation comment for the release. (since Picard 2.6)

_releasecomment

The disambiguation comment for the release. (since Picard 0.15)

_releasecountries

A multi-value variable containing the complete list of release countries for

the release. (since Picard 2.3.1)

_releasegroup

The title of the release group. This is typically the same as the album title,

but can be different.

7.3. Basic Variables 91

https://musicbrainz.org/doc/Terminology#hidden_track
https://musicbrainz.org/doc/Terminology#hidden_track

MusicBrainz Picard, Release v2.12

_releasegroup_firstreleasedate

The date of the earliest release in the release group in the format

YYYY-MM-DD. This is intended to provide, for example, the release date of

the vinyl version of what you have on CD. (Since Picard 2.6)

Note: This is the same information provided by default in the originaldate

tag.

_releasegroupcomment

The disambiguation comment for the release group.

_releaselanguage

The language of the release as per ISO 639-3. (since Picard 0.10)

_secondaryreleasetype

Zero or more secondary types (i.e.: audiobook, compilation, dj-mix, inter-

view, live,mixtape/street, remix, soundtrack, or spokenword) for the release

group.

_totalalbumtracks

The total number of tracks across all discs of this release.

7.4 File Variables

These variables are populated from information found in the audio files themselves,

without any special Picard settings.

Note: Variables that rely on information from the files (e.g.: _bitrate) are only avail-

able for use on tracks with attached files, when running scripts manually on files or in

the file naming script.

Warning: Prior to version 2.5 Picard did not support using file variables in tagging

scripts.

_bitrate

Approximate bitrate in kbps.

_bits_per_sample

Bits of data per sample.

_channels

92 Chapter 7. Tags & Variables

https://en.wikipedia.org/wiki/ISO_639-3

MusicBrainz Picard, Release v2.12

Number of audio channels in the file.

_dirname

The name of the directory containing the file at the point of being loaded

into Picard. (since Picard 1.1)

_extension

The file’s extension. (since Picard 0.9)

_filename

The name of the file without extension. (since Picard 1.1)

_file_created_timestamp

The file creation timestamp in the form ‘YYYY-MM-DD HH:MM:SS’ as reported

by the file system. (since Picard 2.9)

_file_modified_timestamp

The file modification timestamp in the form ‘YYYY-MM-DD HH:MM:SS’ as re-

ported by the file system. (since Picard 2.9)

_format

Media format of the file (e.g.: MPEG-1 Audio).

_length

The length of the track in format mins:secs.

_sample_rate

Number of digitizing samples per second (Hz).

_filesize

Size of the file in bytes.

7.5 Advanced Variables

You can make additional tags available by enabling the Use track relationships and/or

the Use release relationships settings in Picard.

Some variables provide the MusicBrainz Identifier (MBID) of the entity. The MBID is

a 32-character identifier assigned to an entity (e.g.: artist, album, track or work) to

uniquely identify the entity. For more information about MBIDs, please see the Music-

Brainz Identifier page in the MusicBrainz documentation.

Note: Variables will not be created if there was no value retrieved for the variable

from the MusicBrainz database.

7.5. Advanced Variables 93

https://musicbrainz.org/doc/MusicBrainz_Identifier
https://musicbrainz.org/doc/MusicBrainz_Identifier

MusicBrainz Picard, Release v2.12

7.5.1 Release Relationship Variables

If you enable tagging with Use release relationships, you get these extra variables:

_release_series

Amulti-value variable containing the series titles associated with the release.

(since Picard 2.9)

_release_seriesid

A multi-value variable containing the series MBIDs associated with the re-

lease. (since Picard 2.9)

_release_seriescomment

A multi-value variable containing the series disambiguation comments as-

sociated with the release. (since Picard 2.9)

_release_seriesnumber

A multi-value variable containing the series numbers associated with the

release. (since Picard 2.9)

_releasegroup_series

Amulti-value variable containing the series titles associated with the release

group. (since Picard 2.9)

_releasegroup_seriesid

A multi-value variable containing the series MBIDs associated with the re-

lease group. (since Picard 2.9)

_releasegroup_seriescomment

A multi-value variable containing the series disambiguation comments as-

sociated with the release group. (since Picard 2.9)

_releasegroup_seriesnumber

A multi-value variable containing the series numbers associated with the

release group. (since Picard 2.9)

7.5.2 Track Relationship Variables

If you enable tagging with Use track relationships, you get these extra variables:

_lyricistsort

The sort names of the lyricists for the work. (since Picard 2.9)

_performance_attributes

List of performance attributes for the work (e.g.: “live”, “cover”,

“medley”). Use $inmulti to check for a specific type (i.e.:

94 Chapter 7. Tags & Variables

MusicBrainz Picard, Release v2.12

$if($inmulti(%_performance_attributes%,medley), (Medley),)).

(since Picard 1.3)

_recordingtitle

Recording title - normally the same as the track title, but can be different.

_recording_series

A multi-value variable containing the series titles associated with the record-

ing. (since Picard 2.9)

_recording_seriesid

A multi-value variable containing the series MBIDs associated with the

recording. (since Picard 2.9)

_recording_seriescomment

A multi-value variable containing the series disambiguation comments as-

sociated with the recording. (since Picard 2.9)

_recording_seriesnumber

A multi-value variable containing the series numbers associated with the

recording. (since Picard 2.9)

_workcomment

The disambiguation comment associated with the work. (since Picard 2.7)

_work_series

A multi-value variable containing the series titles associated with the work.

(since Picard 2.9)

_work_seriesid

A multi-value variable containing the series MBIDs associated with the work.

(since Picard 2.9)

_work_seriescomment

A multi-value variable containing the series disambiguation comments as-

sociated with the work. (since Picard 2.9)

_work_seriesnumber

A multi-value variable containing the series numbers associated with the

work. (since Picard 2.9)

_writersort

The sort names of the writers for the work. (since Picard 2.9)

7.5. Advanced Variables 95

MusicBrainz Picard, Release v2.12

7.6 Classical Music Tags

With the help of plugins like “Classical Extras” or “Work & Movement” you can make

use of the following tags for tagging your classical music.

movement

Name of the movement (e.g.: “Andante con moto”).

movementnumber

Movement number in Arabic numerals (e.g.: “2”). Players explicitly support-

ing this tag will often display it in Roman numerals (e.g.: “II”).

movementtotal

Total number of movements in the work (e.g.: “4”).

showmovement

Show Work & Movement: If this tag is set to “1” players supporting this tag,

such as iTunes and MusicBee, will display the work, movement number and

movement name instead of the track title. For example, the track will be

displayed as “Symphony no. 5 in C minor, op. 67: II. Andante con moto”

regardless of the value of the title tag.

work

Work Name of the overall work (e.g.: “Symphony no. 5 in C minor, op. 67”).

Note: If you are using iTunes together with MP3 files you should activate the “Save

iTunes compatible grouping and work” option in order for the work to be displayed

correctly.

7.7 Tags from Plugins

Plugins from Picard Plugins can add more tags. Following are some examples.

7.7.1 Last.fm Plugin

genre

Pseudo-genre based on folksonomy tags.

96 Chapter 7. Tags & Variables

MusicBrainz Picard, Release v2.12

7.7.2 Additional Artists Variables Plugin

Album Variables

_artists_album_primary_id

The ID of the primary / first album artist listed

_artists_album_primary_std

The primary / first album artist listed (standardized)

_artists_album_primary_cred

The primary / first album artist listed (as credited)

_artists_album_primary_sort

The primary / first album artist listed (sort name)

_artists_album_additional_id

The IDs of all album artists listed except for the primary / first artist,

as a multi-value

_artists_album_additional_std

All album artists listed (standardized) except for the primary / first

artist, separated by strings provided from the release entry

_artists_album_additional_cred

All album artists listed (as credited) except for the primary / first

artist, separated by strings provided from the release entry

_artists_album_additional_sort

All album artists listed (sort names) except for the primary / first

artist, separated by strings provided from the release entry

_artists_album_additional_std_multi

All album artists listed (standardized) except for the primary / first

artist, as a multi-value

_artists_album_additional_cred_multi

All album artists listed (as credited) except for the primary / first

artist, as a multi-value

_artists_album_all_std

All album artists listed (standardized), separated by strings pro-

vided from the release entry

_artists_album_all_cred

All album artists listed (as credited), separated by strings provided

from the release entry

7.7. Tags from Plugins 97

MusicBrainz Picard, Release v2.12

_artists_album_all_sort

All album artists listed (sort names), separated by strings provided

from the release entry

_artists_album_all_std_multi

All album artists listed (standardized), as a multi-value

_artists_album_all_cred_multi

All album artists listed (as credited), as a multi-value

_artists_album_all_sort_primary

The primary / first album artist listed (sort name) followed by all ad-

ditional album artists (standardized), separated by strings provided

from the release entry

_artists_album_all_count

The number of artists listed as album artists

Track Variables

_artists_track_primary_id

The ID of the primary / first track artist listed

_artists_track_primary_std

The primary / first track artist listed (standardized)

_artists_track_primary_cred

The primary / first track artist listed (as credited)

_artists_track_primary_sort

The primary / first track artist listed (sort name)

_artists_track_additional_id

The IDs of all track artists listed except for the primary / first artist,

as a multi-value

_artists_track_additional_std

All track artists listed (standardized) except for the primary / first

artist, separated by strings provided from the track entry

_artists_track_additional_cred

All track artists listed (as credited) except for the primary / first

artist, separated by strings provided from the track entry

_artists_track_additional_sort

All track artists listed (sort names) except for the primary / first

artist, separated by strings provided from the track entry

98 Chapter 7. Tags & Variables

MusicBrainz Picard, Release v2.12

_artists_track_additional_std_multi

All track artists listed (standardized) except for the primary / first

artist, as a multi-value

_artists_track_additional_cred_multi

All track artists listed (as credited) except for the primary / first

artist, as a multi-value

_artists_track_all_std

All track artists listed (standardized), separated by strings provided

from the track entry

_artists_track_all_cred

All track artists listed (as credited), separated by strings provided

from the track entry

_artists_track_all_sort

All track artists listed (sort names), separated by strings provided

from the track entry

_artists_track_all_std_multi

All track artists listed (standardized), as a multi-value

_artists_track_all_cred_multi

All track artists listed (as credited), as a multi-value

_artists_track_all_sort_primary

The primary / first track artist listed (sort name) followed by all ad-

ditional track artists (standardized), separated by strings provided

from the track entry

_artists_track_all_count

The number of artists listed as track artists

Note: Some plugins make a large number of web service calls to get additional

track-specific data such as performer and work relationships, so loading a large num-

ber of albums and tracks could take a significant amount of time. The time concern can

be partially addressed by operating a local MusicBrainz server with the rate limiting

disabled. Please see the MusicBrainz Server project on GitHub for additional informa-

tion.

7.7. Tags from Plugins 99

https://github.com/metabrainz/musicbrainz-server

MusicBrainz Picard, Release v2.12

7.8 Other Information

For technical details on how tags are written into files, see the Picard Tag Mapping

section.

If you set variables that are not known to Picard, these will be saved as new tags in

ID3, MP4, APEv2 and Vorbis based files. They will not be saved in ASF based files.

• For ID3 based files these tags will be saved to, and reloaded from, ID3 user defined

text information (TXXX) frames.

• For MP4 files these tags will be saved with a prefix of ----:com.apple.iTunes:.

This is widely understood by other tools to be used for custom tags.

• For Vorbis and APEv2 files these tags will be saved as given.

For ID3 based tags (i.e.: MP3 files), you can also set ID3 tags directly from your scripts

by setting a special variable starting with _id3:, e.g. %_id3:TXXX:mytag%. Currently

these tags are not loaded into variables when you reload the file into Picard (since

Picard 0.9).

Note: Saving custom tags to MP4 files is supported since Picard 2.3. Earlier versions

will neither save nor load custom tags in MP4 files.

100 Chapter 7. Tags & Variables

CHAPTER

EIGHT

SCRIPTING

Scripts are used to control some aspects of the operation of Picard.

There are two types of scripts used in Picard: the file naming script and tagging scripts.

These are managed from the “File Naming” and “Scripting” sections of the “Options

→ Options…” menu.

Scripts are often discussed in the MetaBrainz Community Forum, and there is a thread

specific to file naming and script snippets.

See also:

Please refer to the section on Scripts in Extending Picard for additional details about

the two types of scripts, including how and when each of the scripts are executed.

8.1 Syntax

The syntax is derived from Foobar2000’s titleformat. There are three base elements:

text, variable and function. Variables consist of alphanumeric characters enclosed in

percent signs (e.g.: %artist%). Functions start with a dollar sign and end with an

argument list enclosed in parentheses (e.g.: $lower(...)).

Note: When entering input strings into Picard scripts you have to escape a backslash

“\”, dollar sign “$”, comma “,” and the left and right parentheses “(” and “)” in order

to force Picard to not interpret them as part of the script command. This is done by

inserting a backslash before the character to be escaped. For example, to set a tag

value to ($1,000,000) it would have to be entered as $set(test_tag,\(\$1\,000\

,000\)).

Note: Usually you can access the values of a tag by the proper variable name. For

example, if your tag is called “rerecorded” you can use %rerecorded%. But the hyphen

is not a valid character for a script variable, so %re-recorded% gives a syntax error. In

cases like this you need to use $get(re-recorded).

101

https://community.metabrainz.org/
https://community.metabrainz.org/t/repository-for-neat-file-name-string-patterns-and-tagger-script-snippets/2786/
https://wiki.hydrogenaud.io/index.php?title=Foobar2000:Titleformat_Reference

MusicBrainz Picard, Release v2.12

8.2 Metadata Variables

See Tags & Variables for the list of the variables provided by Picard.

Picard’s variables can be either simple variables containing a single text string, or

multi-value variables containing multiple text strings. In scripts, multi-value variables

are automatically converted to a single text string by joining the values with a semi-

colon “;”, except when used with special multi-value functions.

Note: The full list of available scripting functions is covered in the following chapter.

102 Chapter 8. Scripting

CHAPTER

NINE

SCRIPTING FUNCTIONS

The following is a list of the Picard scripting functions grouped by function type.

9.1 Assignment Functions

These functions are used to assign (or unassign) a value to a tag or variable. The

assignment scripting functions are:

9.1.1 $copy

Usage: $copy(target,source)

Category: assignment

Implemented: Picard 0.9

Description:

Copies metadata from variable source to target. The difference from $set(target,

%source%) is that $copy(target,source) copies multi-value variables without flat-

tening them.

Note: Unlike most functions, in this case the source is specified without enclosing

it with percent signs (%).

Warning: If the variable target already exists, it will be overwritten by source.

Example:

The following statements will yield the values for target as indicated:

103

MusicBrainz Picard, Release v2.12

$set(source,)

$set(target,This will be overwritten)

$copy(target,source) ==> ""

$set(source,one)

$copy(target,source) ==> "one"

$setmulti(source,one)

$copy(target,source) ==> "one"

$setmulti(source,one; two)

$copy(target,source) ==> "one; two"

9.1.2 $copymerge

Usage: $copymerge(target,source[,keep_duplicates])

Category: assignment

Implemented: Picard 1.0

Description:

Merges metadata from variable source into target, removing duplicates and append-

ing to the end, so retaining the original ordering. Like $copy, this will also copy

multi-valued variables without flattening them. Following the operation, target will

be a multi-value variable.

If keep_duplicates is set, then the duplicates will not be removed from the result.

Note: Unlike most functions, in this case the source is specified without enclosing

it with percent signs (%).

Example:

The following statements will yield the values for target as indicated:

$set(target,)

$set(source,one)

$copymerge(target,source) ==> "one"

$set(target,zero)

$set(source,one)

$copymerge(target,source) ==> "zero; one"

$set(target,zero)

(continues on next page)

104 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

(continued from previous page)

$setmulti(source,one; two)

$copymerge(target,source) ==> "zero; one; two"

$setmulti(target,zero; two)

$setmulti(source,one; two)

$copymerge(target,source) ==> "zero; two; one"

$set(target,zero; one; zero)

$set(source,one; two; three)

$copymerge(target,source) ==> "zero, one; two; three"

$setmulti(target,zero; two)

$setmulti(source,one; two)

$copymerge(target,source,1) ==> "zero; two; one; two"

9.1.3 $delete

Usage: $delete(name)

Category: assignment

Implemented: Picard 2.1

Description:

Unsets the variable name and marks the tag for deletion.

This is similar to $unset(name) but also marks the tag for deletion. For example,

running $delete(genre) will actually remove the “genre” tag from a file when saving.

Example:

The following statements will perform the actions indicated:

$delete(genre) ==> Remove the "genre" tag from a file when saving

9.1.4 $set

Usage: $set(name,value)

Category: assignment

Description:

Sets the variable name to value. The value of a variable is available to other script

functions if it is enclosed between ‘%’ characters (e.g.: %name%). If name is another

9.1. Assignment Functions 105

MusicBrainz Picard, Release v2.12

variable (e.g.: %indirect%) the value of the variable will be used as name. This allows

the creation of dynamically named variables.

Note: To create a variable which can be used for the file naming string, but which

will not be written as a tag in the file, prefix the variable name with an underscore.

%something% will create a “something” tag; %_something% will not.

Example:

The following statements will return the values indicated:

$set(comment,Testing) ==> "Testing" will be written to the "comment"␣

→˓tag

$set(_hidden,Testing) ==> "_hidden" variable will not be written

$set(_base,redirect)

$set(%_base%,Testing) ==> "Testing" will be written to the "redirect

→˓" tag

9.1.5 $setmulti

Usage: $setmulti(name,value[,separator])

Category: assignment

Implemented: Picard 1.0

Description:

Sets the variable name to value, using the separator (or a semicolon followed by a

space “; ” if not passed) to coerce the value back into a proper multi-valued variable.

This can be used to operate on multi-valued variables as a string, and then set them

back as proper multi-valued variable.

Example:

The following statements will return the values indicated:

$setmulti(genre,$lower(%genre%)) ==> all "genre" elements in lower␣

→˓case

$setmulti(alpha,A; B; C) ==> 3 elements ("A", "B" and "C")

$setmulti(mixed,A:A; B:B,:) ==> 3 elements ("A", "A; B" and "B")

106 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

9.1.6 $unset

Usage: $unset(name)

Category: assignment

Description:

Unsets the variable name. The function allows for wildcards to unset certain tags (works

with ‘performer:*’, ‘comment:*’, and ‘lyrics:*’).

Example:

The following would unset all performer tags:

$unset(performer:*)

9.2 Text Functions

These functions are used to manage text (e.g.: extract, replace or format) in tags or

variables. The text scripting functions are:

9.2.1 $delprefix

Usage: $delprefix(text[,prefixes])

Category: text

Implemented: Picard 1.3

Description:

Deletes the specified prefixes from the beginning of text. Any number of prefixes

can be specified, separated by commas. If no prefix is specified “A” and “The” are used

by default. Note that the matching is case-sensitive.

Example:

The following statements will return the values indicated:

$delprefix(The Beatles) ==> "Beatles"

$delprefix(The Beatles,) ==> "The Beatles"

$delprefix(THE Beatles) ==> "THE Beatles"

$delprefix(THE Beatles,THE) ==> "Beatles"

$delprefix(The Beatles,A,An) ==> "The Beatles"

9.2. Text Functions 107

MusicBrainz Picard, Release v2.12

9.2.2 $find

Usage: $find(haystack,needle)

Category: text

Implemented: Picard 2.3

Description:

Returns the zero-based index of the first occurrence of needle in haystack, or an

empty string if needle was not found. The comparisons are case-sensitive. If needle

is blank, it will match the beginning of haystack and return “0”. The function does not

support wildcards.

Note: Prior to Picard 2.3.2 $find returned “-1” if needle was not found.

Example:

The following statements will return the values indicated:

$find(abcdef,a) ==> "0"

$find(abcdef,c) ==> "2"

$find(abcdef,cd) ==> "2"

$find(abcdef,g) ==> ""

$find(abcdef,B) ==> ""

$find(,a) ==> ""

$find(abcdef,) ==> "1"

9.2.3 $firstalphachar

Usage: $firstalphachar(text[,nonalpha])

Category: text

Implemented: Picard 0.12

Description:

Returns the first character of text in upper case. If text does not begin with an alpha-

betic character, then nonalpha is returned instead. If nonalpha is not specified, the

default value “#” will be used.

Example:

The following statements will return the values indicated:

$firstalphachar(abc) ==> "A"

$firstalphachar(123) ==> "#"

(continues on next page)

108 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

(continued from previous page)

$firstalphachar(***) ==> "#"

$firstalphachar(***,) ==> ""

$firstalphachar(***,^) ==> "^"

$firstalphachar(***,non-alpha) ==> "non-alpha"

9.2.4 $firstwords

Usage: $firstwords(text,length)

Category: text

Implemented: Picard 0.12

Description:

Truncate text to length, only returning the complete words from text which fit within

length characters. If length is less than 0, then the value used is the number of char-

acters in text plus length (e.g.: $firstwords(one two three,-3) is the same as

$firstwords(one two three,10)). If length is missing or a negative number greater

than the number of characters in text, the function will return an empty string.

Example:

The following statements will return the values indicated:

$firstwords(Once upon a time,) ==> ""

$firstwords(Once upon a time,0) ==> ""

$firstwords(Once upon a time,3) ==> ""

$firstwords(Once upon a time,7) ==> "Once"

$firstwords(Once upon a time,-3) ==> "Once upon a"

$firstwords(Once upon a time,-30) ==> ""

9.2.5 $get

Usage: $get(name)

Category: text

Description:

Returns the variable name (equivalent to %name%) or an empty string if name has not

been set. If name is another variable (e.g. %indirect%) the value of the variable will

be used as name. This allows the retrieval of dynamically named variables.

Note: Usually you can access the values of a tag by the proper variable name. For

example, if your tag is called “rerecorded” you can use %rerecorded%. But the hyphen

9.2. Text Functions 109

MusicBrainz Picard, Release v2.12

is not a valid character for a script variable, so %re-recorded% gives a syntax error. In

cases like this you need to use $get(re-recorded).

Example:

The following statements will return the values indicated:

$set(foo,This is foo)

$set(bar,foo)

$get(foo) ==> "This is foo"

$get(bar) ==> "foo"

$get(%bar%) ==> "This is foo"

$get(baz) ==> "" ('baz' has not been set to a value)

9.2.6 $initials

Usage: $initials(text)

Category: text

Implemented: Picard 0.12

Description:

Returns the first character of each word in text, if it is an alphabetic character.

Example:

The following statements will return the values indicated:

$set(foo,This is a test)

$initials(%foo%) ==> "Tiat"

$initials(This is a test) ==> "Tiat"

$initials(This is a 123 test) ==> "Tiat"

9.2.7 $left

Usage: $left(text,number)

Category: text

Description:

Returns the first number characters from text. If number is less than 0, then the value

used is the number of characters in text plus number (e.g.: $left(abcd,-1) is the

same as $left(abcd,3)). If number is missing or a negative number greater than the

number of characters in text, the function will return an empty string.

Example:

110 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

The following statements will return the values indicated:

$left(,) ==> ""

$left(ABC,) ==> ""

$left(ABC,0) ==> ""

$left(ABC,2) ==> "AB"

$left(ABC,4) ==> "ABC"

$left(ABC,-2) ==> "A"

$left(ABC,-4) ==> ""

9.2.8 $len

Usage: $len(text)

Category: text

Description:

Returns the number of characters in text.

Example:

The following statements will return the values indicated:

$set(foo,)

$len(%foo%) ==> "0"

$set(foo,ABC)

$len(%foo%) ==> "3"

$len() ==> "0"

$len(ABC) ==> "3"

9.2.9 $lower

Usage: $lower(text)

Category: text

Implemented: Picard

Description:

Returns text in lower case.

Example:

The following statement will return the value indicated:

9.2. Text Functions 111

MusicBrainz Picard, Release v2.12

$title(tHe houR is upOn uS) ==> "the hour is upon us"

9.2.10 $num

Usage: $num(number,length)

Category: text

Description:

Returns number formatted to length digits, where number and length are integers and

length cannot be greater than 20.

Example:

The following statements will return the values indicated:

$num(,) ==> ""

$num(,1) ==> "0"

$num(a,) ==> ""

$num(a,5) ==> "00000"

$num(123,5) ==> "00123"

$num(1.23,5) ==> "00000"

$num(123,) ==> ""

$num(123,0) ==> "123"

$num(123,1) ==> "123"

$num(123,20) ==> "00000000000000000123"

$num(123,50) ==> "00000000000000000123"

$num(123,5.5) ==> ""

$num(1.23,10) ==> "0000000000"

9.2.11 $pad

Usage: $pad(text,length,character)

Category: text

Description:

Pads the text to the length provided by adding as many copies of character as

needed to the beginning of the string. For the padded length to be correct, character

must be exactly one character in length. If length is less than the number of characters

in text, the function will return text. If length is missing or is not a number, the

function will return an empty string.

Example:

The following statements will return the values indicated:

112 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

$pad(abc,5,+) ==> "++abc"

$pad(abc,0,+) ==> "abc"

$pad(abc,5,) ==> "abc"

$pad(abc,5,XY) ==> "XYXYabc" (note final length is incorrect)

$pad(abc,,+) ==> ""

$pad(abc,x,+) ==> ""

9.2.12 $replace

Usage: $replace(text,search,replace)

Category: text

Description:

Replaces occurrences of search in text with replace and returns the resulting string.

Example:

The following statements will return the values indicated:

$set(foo,I like cats the best)

$replace(%foo%,cat,dog) ==> "I like dogs the best"

$set(foo,I like cats the best)

$set(bar,cat)

$replace(%foo%,%bar%,dog) ==> "I like dogs the best"

$set(foo,I like cats the best)

$set(bar,cat)

$set(baz,dog)

$replace(%foo%,%bar%,%baz%) ==> "I like dogs the best"

$replace(I like cats the best,cat,dog) ==> "I like dogs the best"

$replace(I like cats the best,pig,dog) ==> "I like cats the best"

$replace(I like cats the best,cat,) ==> "I like s the best"

$replace(Bad replace,,_) ==> "_B_a_d_ _r_e_p_l_a_c_e_"

9.2. Text Functions 113

MusicBrainz Picard, Release v2.12

9.2.13 $reverse

Usage: $reverse(text)

Category: text

Description:

Returns text in reverse order.

Example:

The following statements will return the values indicated:

$set(foo,abcde)

$reverse(%foo%) ==> "edcba"

$reverse(abcde) ==> "edcba"

9.2.14 $right

Usage: $right(text,number)

Category: text

Description:

Returns the last number characters from text. If number is less than 1, then the value

used is the number of characters in text plus number (e.g.: $right(abcd,0) is the

same as $right(abcd,4)). If number is missing or a negative number greater than

the number of characters in text, the function will return an empty string.

Example:

The following statements will return the values indicated:

$right(abcd,2) ==> "cd"

$right(abcd,0) ==> "cd"

$right(abcd,-1) ==> "bcd"

$right(abcd,) ==> ""

$right(abcd,-5) ==> ""

114 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

9.2.15 $rreplace

Usage: $rreplace(text,pattern,replace)

Category: text

Description:

Regular expression replace. This function will replace the matching group specified

by pattern with replace in text. For more information about regular expressions,

please see the article on Wikipedia.

Note: When entering regular expressions into Picard scripts you have to escape a

backslash “\”, dollar sign “$”, comma “,” and the left and right parentheses “(” and

“)” in order to force Picard to not interpret them as part of the script command. This

is done by inserting a backslash before the character to be escaped. For example, the

regular expression ^\s*([0-9,\.]*)$ would have to be entered as ^\\s*\([0-9\,\

\.]*\)\$.

Example:

The following statements will return the values indicated:

$rreplace(test \(disc 1\),\\s\\\(disc \\d+\\\),) ==> "test"

$rreplace(test,[t,) ==> "test"

9.2.16 $rsearch

Usage: $rsearch(text,pattern)

Category: text

Description:

Regular expression search. This function will return the first matching group specified

by pattern from text. For more information about regular expressions, please see

the article on Wikipedia.

If a marked subexpression is defined using parentheses within the search pattern,

only the pattern captured by the subexpression will be returned. If more than one

marked subexpression is defined and matched, only the pattern captured by the first

subexpression will be returned. If more than one marked subexpression is defined and

not all are matched, an empty string will be returned. If no subexpression is specified,

then the pattern captured by the whole search expression will be returned.

Note: When entering regular expressions into Picard scripts you have to escape a

backslash “\”, dollar sign “$”, comma “,” and the left and right parentheses “(” and

9.2. Text Functions 115

https://wikipedia.org/wiki/Regular_expression
https://wikipedia.org/wiki/Regular_expression

MusicBrainz Picard, Release v2.12

“)” in order to force Picard to not interpret them as part of the script command. This

is done by inserting a backslash before the character to be escaped. For example, the

regular expression ^\s*([0-9,\.]*)$ would have to be entered as ^\\s*\([0-9\,\

\.]*\)\$.

Example:

The following statements will return the values indicated:

$rsearch(test \(disc 1\),\\\(disc \(\\d+\)\\\)) ==> "1"

$rsearch(test \(disc 1\),\\\(disc \\d+\\\)) ==> "(disc 1)"

$rsearch(test,x) ==> ""

$rsearch(test,t) ==> "t"

$rsearch(test,s) ==> "s"

$rsearch(test,\(e\).*s) ==> "e"

$rsearch(test,\(e\).*\(s\)) ==> "e"

$rsearch(test,\(e\).*x) ==> ""

$rsearch(test,\(e\).*\(x\)) ==> ""

9.2.17 $strip

Usage: $strip(text)

Category: text

Description:

Replaces all whitespace in text with a single space, and removes leading and trailing

spaces. Whitespace characters include multiple consecutive spaces, and various other

unicode characters. Characters such as newlines ‘\n’, tabs ‘\t’ and returns ‘\r’ are

treated as spaces.

Example:

The following statements will each return “This text has been stripped.”:

$strip(This text has been stripped.)

$strip(This text has been stripped.)

$strip(This text has been stripped.)

$strip(This text has been stripped.)

$strip(This text has been stripped.)

$strip(This text has been stripped.)

$strip(This text\rhas\nbeen\tstripped.)

116 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

9.2.18 $substr

Usage: $substr(text,start[,end])

Category: text

Implemented: Picard 2.3

Description:

Returns the substring of text beginning with the character at the start index, up to

(but not including) the character at the end index. Indexes are zero-based. Negative

numbers will be counted back from the end of the string. If the start index is left blank,

it will default to the start of the string. If the end index is left blank or not included, it

will default to the end of the string. If the start index evaluates to a negative number

(e.g.: text is “abc” and start is -10), it will default to the start of the string. Similarly,

if end index is a number greater than the number of characters in the string, it will

default to the end of the string. Invalid index values (e.g.: start greater than end) will

return an empty string.

Example:

The following statements will return the values indicated:

$substr(abcdefg) ==> "abcdefg"

$substr(abcdefg,3) ==> "defg"

$substr(abcdefg,,3) ==> "abc"

$substr(abcdefg,0,3) ==> "abc"

$substr(abcdefg,-3) ==> "efg"

$substr(abcdefg,-6,3) ==> "bc"

$substr(abcdefg,-10,3) ==> "abc"

$substr(abcdefg,3,1) ==> ""

9.2.19 $swapprefix

Usage: $swapprefix(text[,prefixes])

Category: text

Implemented: Picard 1.3 (previously as a plugin since Picard 0.13)

Description:

Moves the specified prefixes from the beginning to the end of text. Any number

of prefixes can be specified, separated by commas. If no prefix is specified “A” and

“The” are used by default. Note that the matching is case-sensitive.

Example:

If the albumartist is “Le Butcherettes”, the following statements will return the values

indicated:

9.2. Text Functions 117

MusicBrainz Picard, Release v2.12

$swapprefix(%albumartist%) ==> "Le Butcherettes"

$swapprefix(%albumartist%,le) ==> "Le Butcherettes"

$swapprefix(%albumartist%,L) ==> "Le Butcherettes"

$swapprefix(%albumartist%,A,An,The,Le) ==> "Butcherettes, Le"

9.2.20 $title

Usage: $title(text)

Category: text

Implemented: Picard 2.1

Description:

Returns text with the first character in every word capitalized. Note that other charac-

ters in the words will not be modified, which allows the preservation of all upper-case

acronyms such as “BBC”. To only have the first character of each word capitalized you

could first change the text to lower-case.

Examples:

The following statements will return the values indicated:

$set(foo,tHe houR is upOn uS)

$title(%foo%) ==> "THe HouR Is UpOn US"

$title($lower(%foo%)) ==> "The Hour Is Upon Us"

$set(bar,THIS TEXT IS ALL CAPITALS)

$title(%bar%) ==> "THIS TEXT IS ALL CAPITALS"

$title($lower(%bar%)) ==> "This Text Is All Capitals"

$set(baz,AC/DC recorded live at the BBC studio in London)

$title(%baz%) ==> "AC/DC Recorded Live At The BBC Studio In␣

→˓London"

$title($lower(%baz%)) ==> "Ac/Dc Recorded Live At The Bbc Studio In␣

→˓London"

9.2.21 $trim

Usage: $trim(text[,character])

Category: text

Description:

118 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

Trims all leading and trailing whitespaces from text. The optional second parame-

ter character specifies the character to trim. If multiple characters are provided in

character, each character will be applied separately to the function.

Examples:

The following statements will return the values indicated:

$trim(Trimmed) ==> "Trimmed"

$trim(__Trimmed__,_) ==> "Trimmed"

$trim(x__Trimmed__y,_x) ==> "Trimmed__y"

9.2.22 $truncate

Usage: $truncate(text,length)

Category: text

Implemented: Picard 0.12

Description:

Truncate text to length. If length is less than 0, then the value used is the num-

ber of characters in text plus length (e.g.: $truncate(abcd,-1) is the same as

$truncate(abcd,3)). If length is missing or a negative number greater than the

number of characters in text, the function will return an empty string.

Example:

The following statements will return the values indicated:

$truncate(Once upon a time,) ==> ""

$truncate(Once upon a time,0) ==> ""

$truncate(Once upon a time,3) ==> "Onc"

$truncate(Once upon a time,-3) ==> "Once upon a t"

$truncate(Once upon a time,-30) ==> ""

9.2.23 $upper

Usage: $upper(text)

Category: text

Description:

Returns text in upper case.

Example:

The following statement will return the value indicated:

9.2. Text Functions 119

MusicBrainz Picard, Release v2.12

$upper(This text is UPPER case) ==> "THIS TEXT IS UPPER CASE"

9.3 Multi-Value Functions

These functions are used to manage multi-value tags or variables. The multi-value

scripting functions are:

9.3.1 $cleanmulti

Usage: $cleanmulti(name)

Category: multi-value

Implemented: Picard 2.8

Description:

Removes all empty elements from the multi-value variable name.

Example:

The following statements will return the values indicated:

$setmulti(test,One; ; Two; Three)

%test% ==> "One; ; Two; Three"

$cleanmulti(test)

%test% ==> "One; Two; Three"

9.3.2 $getmulti

Usage: $getmulti(name,index[,separator])

Category: multi-value

Implemented: Picard 2.3

Description:

Gets the element at index from the multi-value variable name. A literal value repre-

senting a multi-value can be substituted for name, using the separator (or a semicolon

followed by a space “; ” if not passed) to coerce the value into a proper multi-value

variable.

The index is zero based. If index is less than 0, then the value used is the num-

ber of elements in name plus index (e.g.: $getmulti(%abcd%,-1) is the same as

$getmulti(%abcd%,3) if %abcd% is a multi-value variable with four elements). If index

is missing, not an integer, a number greater than or equal to the number of elements

120 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

in name, or a negative number greater than the number of elements in name, then the

function will return an empty string.

Example:

The following statements will return the values indicated:

$set(foo,A; B; C)

$setmulti(bar,A; B; C)

$set(baz,1)

$getmulti(%foo%,%baz%) ==> ""

$getmulti(%foo%,0) ==> "A; B; C"

$getmulti(%foo%,-1) ==> "A; B; C"

$getmulti(%foo%,-%baz%) ==> "A; B; C"

$getmulti(%bar%,%baz%) ==> "B"

$getmulti(%bar%,0) ==> "A"

$getmulti(%bar%,-1) ==> "C"

$getmulti(%bar%,-%baz%) ==> "C"

$getmulti(A:1; B:2; C:3,1) ==> "B:2"

$getmulti(A:1; B:2; C:3,1,:) ==> "1; B"

$getmulti(A:1; B:2; C:3,10) ==> ""

$getmulti(A:1; B:2; C:3,-10) ==> ""

$getmulti(A:1; B:2; C:3,1.5) ==> ""

$getmulti(A:1; B:2; C:3,a) ==> ""

9.3.3 $join

Usage: $join(name,text[,separator])

Category: multi-value

Implemented: Picard 2.3

Description:

Joins all elements in themulti-value variable name, placing text between each element,

and returns the result as a string. A literal value representing a multi-value can be

substituted for name, using the separator (or a semicolon followed by a space “; ” if

not passed) to coerce the value into a proper multi-valued variable.

Example:

The following statements will return the values indicated:

$set(foo,First:A; Second:B)

$join(%foo%, >>) ==> "First:A; Second:B"

$join(%foo%, >> ,:) ==> "First >> A; Second >> B"

(continues on next page)

9.3. Multi-Value Functions 121

MusicBrainz Picard, Release v2.12

(continued from previous page)

$setmulti(bar,First:A; Second:B)

$join(%bar%, >>) ==> "First:A >> Second:B"

$join(%bar%, >> ,:) ==> "First >> A; Second >> B"

$join(First:A; Second:B,) ==> "First:ASecond:B"

$join(First:A; Second:B, >>) ==> "First:A >> Second:B"

$join(First:A; Second:B, >> ,:) ==> "First >> A; Second >> B"

9.3.4 $lenmulti

Usage: $lenmulti(name[,separator])

Category: multi-value

Description:

Returns the number of elements in the multi-value variable name. A literal value repre-

senting a multi-value can be substituted for name, using the separator (or a semicolon

followed by a space “; ” if not passed) to coerce the value into a proper multi-valued

variable. If name is missing $lenmulti will return “0”. If separator is specified but left

blank (e.g. $setmulti(A; B; C,)) the function will return “1”.

Example:

The following statements will return the values indicated:

$set(foo,)

$lenmulti(%foo%) ==> "0"

$set(foo,A; B; C)

$lenmulti(%foo%) ==> "1"

$setmulti(foo,A; B; C)

$lenmulti(%foo%) ==> "3"

$lenmulti(A; B; C) ==> "3"

$lenmulti(A:A; B:B; C:C,:) ==> "4"

$lenmulti(,) ==> "0"

$lenmulti(,:) ==> "0"

$lenmulti(A; B; C,) ==> "1"

122 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

9.3.5 $map

Usage: $map(name,code[,separator])

Category: multi-value

Implemented: Picard 2.3

Description:

Iterates over each element found in the multi-value variable name and updates the

value of the element to the value returned by code, returning the updated multi-value

variable. A literal value representing a multi-value can be substituted for name, using

the separator (or a semicolon followed by a space “; ” if not passed) to coerce the

value into a proper multi-valued variable.

For each loop, the element value is first stored in the variable _loop_value and the

count is stored in the variable _loop_count. This allows the element or count value to

be accessed within the code script.

Empty elements are automatically removed from the output.

Note: You cannot save the code to a variable and then pass the variable to the

function as %code% because it will be evaluated when it is assigned to the variable

rather than during the loop.

Example:

The following statements will return the values indicated:

$set(foo,First:A; Second:B)

$map(%foo%,

$upper(%_loop_count%=%_loop_value%)) ==> "1=FIRST:A; SECOND:B"

$map(%foo%,

$upper(%_loop_count%=%_loop_value%),:) ==> "1=FIRST:2=A;␣

→˓SECOND:3=B"

$setmulti(bar,First:A; Second:B)

$map(%bar%,

$upper(%_loop_count%=%_loop_value%)) ==> "1=FIRST:A; 2=SECOND:B

→˓"

$map(%bar%,

$upper(%_loop_count%=%_loop_value%),:) ==> "1=FIRST:2=A;␣

→˓SECOND:3=B"

$setmulti(baz,A; B; x; C)

$map(%baz%,$if($eq(%_loop_value%,x),,%_loop_count%=%_loop_value%))

==> "1=A; 2=B; 4=C"

$map(First:A; Second:B,
(continues on next page)

9.3. Multi-Value Functions 123

MusicBrainz Picard, Release v2.12

(continued from previous page)

$upper(%_loop_count%=%_loop_value%)) ==> "1=FIRST:A; 2=SECOND:B

→˓"

9.3.6 $performer

Usage: $performer(pattern[,separator])

Category: multi-value

Implemented: Picard 0.10

Description:

Returns the performers where the performance type matches pattern separated by

separator (or a comma followed by a space “, ” if not passed). If pattern is blank,

then all performers will be returned. Note that by default the pattern to be matched

is case-sensitive and can appear anywhere in the tag.

As of version 2.7, you can explicitly define a regular expression in the form /pat-

tern/flags. The only supported flag is “i” (ignore case). For more information about

regular expressions, please see the article on Wikipedia.

Note: When entering regular expressions into Picard scripts you have to escape a

backslash “\”, dollar sign “$”, comma “,” and the left and right parentheses “(” and

“)” in order to force Picard to not interpret them as part of the script command. This

is done by inserting a backslash before the character to be escaped. For example, the

regular expression ^\s*([0-9,\.]*)$ would have to be entered as ^\\s*\([0-9\,\

\.]*\)\$.

Example:

With the performer tags as performer:guitar = “Ann”, performer:rhythm-guitar

= “Bob” and performer:drums (drum kit) = “Cindy”, the following statements will

return the values indicated:

$set(foo,guitar)

$performer(%foo%) ==> "Ann, Bob"

$performer(guitar) ==> "Ann, Bob"

$performer(Guitar) ==> ""

$performer(rhythm-guitar) ==> "Bob"

$performer(/Guitar/i) ==> "Ann, Bob"

$performer(/Guitar/) ==> ""

$performer(/^guitar/) ==> "Ann"

$performer(/^Guitar/i) ==> "Ann"

$performer(drums \() ==> "Cindy"

(continues on next page)

124 Chapter 9. Scripting Functions

https://wikipedia.org/wiki/Regular_expression

MusicBrainz Picard, Release v2.12

(continued from previous page)

$performer(\(drum kit\)) ==> "Cindy"

$performer() ==> "Ann, Bob, Cindy"

$performer(, /) ==> "Ann / Bob / Cindy"

9.3.7 $replacemulti

Usage: $replacemulti(name,search,replace[,separator])

Category: multi-value

Implemented: Picard 2.6.1

Description:

Replaces occurrences of search with replace in the multi-value variable name and

returns the resulting multi-value variable string with the elements separated by

separator (or the default separator of a semicolon followed by a space “; ” if not

passed).

Empty elements are automatically removed from the output.

Example:

The following statements will return the values indicated:

$setmulti(foo,Electronic; Idm; Techno)

$replacemulti(%foo%,Idm,IDM) ==> "Electronic; IDM;␣

→˓Techno"

$setmulti(foo,Electronic; Jungle; Bardcore)

$replacemulti(%foo%,Bardcore,Hardcore) ==> "Electronic; Jungle;␣

→˓Hardcore"

$setmulti(foo,One; Two; Three)

$replacemulti(%foo%,Four,Five) ==> "One; Two; Three"

$setmulti(foo,Four; Five; Six)

$replacemulti(%foo%,Five,) ==> "Four; Six"

9.3. Multi-Value Functions 125

MusicBrainz Picard, Release v2.12

9.3.8 $reversemulti

Usage: $reversemulti(name[,separator])

Category: multi-value

Implemented: Picard 2.3.1

Description:

Returns a copy of themulti-value variable namewith the elements in reverse order. A lit-

eral value representing a multi-value can be substituted for name, using the separator

(or a semicolon followed by a space “; ” if not passed) to coerce the value into a proper

multi-valued variable.

This function can be used in conjunction with the $sortmulti function to sort in de-

scending order.

Example:

The following statements will return the values indicated:

$set(foo,A; B; C; D; E)

$reversemulti(%foo%) ==> "A; B; C; D; E"

$setmulti(bar,A; B; C; D; E)

$reversemulti(%bar%) ==> "E; D; C; B; A"

$setmulti(baz,A:A; B:B; C:C,:)

$reversemulti(%baz%) ==> "C; B; C; A; B; A"

$reversemulti(A; B; C; D; E) ==> "E; D; C; B; A"

$reversemulti(A:A; B:B; C:C,:) ==> "C:B; C:A; B:A"

9.3.9 $slice

Usage: $slice(name,start[,end[,separator]])

Category: multi-value

Implemented: Picard 2.3

Description:

Returns a multi-value variable containing the elements from the start index up to

but not including the end index from the multi-value variable name. A literal value

representing a multi-value can be substituted for name, using the separator (or a

semicolon followed by a space “; ” if not passed) to coerce the value into a proper

multi-valued variable.

126 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

Indexes are zero based. Negative numbers will be counted back from the number of

elements in the list. If the start or end indexes are left blank, they will default to 0

and the number of elements in the list respectively.

A typical use might be to create a multi-value variable with all artists in %artists%

except the first, which can be used to create a “feat.” list. This would look something

like $setmulti(supporting_artists,$slice(%artists%,1)).

Example:

The following statements will return the values indicated:

$set(foo,A; B; C; D; E)

$slice(%foo%,1) ==> ""

$setmulti(foo,A; B; C; D; E)

$slice(%foo%,1) ==> "B; C; D; E"

$slice(A; B; C; D; E,1,) ==> "B; C; D; E"

$slice(A; B; C; D; E,1,3) ==> "B; C"

$slice(A; B; C; D; E,,3) ==> "A; B; C"

$slice(A; B; C; D; E,1,3) ==> "B; C"

$slice(A; B; C; D; E,1,-1) ==> "B; C; D"

$slice(A; B; C; D; E,-4,4) ==> "B; C; D"

$slice(A:A; B:B; C:C; D:D; E:E,,1,:) ==> "A"

$slice(A:A; B:B; C:C; D:D; E:E,-2,,:) ==> "D; E:E"

$slice(A:A; B:B; C:C; D:D; E:E,2,4,:) ==> "B; C:C; D"

9.3.10 $sortmulti

Usage: $sortmulti(name[,separator])

Category: multi-value

Implemented: Picard 2.3.1

Description:

Returns a copy of the multi-value variable name with the elements sorted in ascending

order. A literal value representing a multi-value can be substituted for name, using the

separator (or a semicolon followed by a space “; ” if not passed) to coerce the value

into a proper multi-valued variable. If name is missing $sortmulti will return an empty

string.

Example:

The following statements will return the values indicated:

$set(foo,B; C; E; D; A)

$sortmulti(%foo%) ==> "B; C; E; D; A"

(continues on next page)

9.3. Multi-Value Functions 127

MusicBrainz Picard, Release v2.12

(continued from previous page)

$setmulti(foo,B; C; E; D; A)

$sortmulti(%foo%) ==> "A; B; C; D; E"

$sortmulti(B; D; E; A; C) ==> "A; B; C; D; E"

$sortmulti(B:AB; D:C; E:D; A:A; C:X,:) ==> "A; C:AB; D:B:C; E:D; A:X"

$sortmulti(,) ==> ""

$sortmulti(,:) ==> ""

9.3.11 $unique

Usage: $unique(name[,case_sensitive[,separator]])

Category: multi-value

Implemented: Picard 2.6.1

Description:

Returns a sorted copy of the multi-value variable name with duplicate elements re-

moved. By default, the comparison ignores the case of the elements; however, this

can be changed by setting case_sensitive to a non-empty value. A literal value repre-

senting a multi-value can be substituted for name, using the separator (or a semicolon

followed by a space “; ” if not passed) to coerce the value into a proper multi-valued

variable. If name is missing $unique will return an empty string.

Note: When performing a (default) case-insensitive comparison, the last matching

element will be used in the result. For example, if the multi-value variable contained

‘abc’, ‘Abc’, ‘ABc’ and ‘ABC’ in that order, then the element ‘ABC’ would be included

in the output.

Example:

The following statements will return the values indicated:

$setmulti(foo,a; A; B; b; cd; Cd; cD; CD; a; A; b)

$set(bar,a; A; B; b; cd; Cd; cD; CD; a; A; b)

$unique(%foo%) ==> "A; CD; b"

$unique(%bar%) ==> "a; A; B; b; cd; Cd; cD; CD; a; A; b"

$unique(%foo%,1) ==> "A; B; CD; Cd; a; b; cD; cd"

$unique(a; A; B; b; cd; Cd; cD; CD; a; A; b) ==> "A; CD; b"

128 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

9.4 Mathematical Functions

These functions are used to perform arithmetic operations on tags or variables. The

mathematical scripting functions are:

9.4.1 $add

Usage: $add(x,y,*args)

Category: mathematical

Description:

Adds y to x. Can be used with an arbitrary number of arguments (i.e.: $add(x,y,z) =

(x + y) + z). Returns an empty string if an argument is missing or not an integer.

Example:

The following statements will return the values indicated:

$add(20,15) ==> "35"

$add(20,-15) ==> "5"

$add(20,14,1) ==> "35"

$add(20,10,3,2) ==> "35"

$add(20,10,3,) ==> ""

$add(20,10,3,a) ==> ""

$add(20,10,3.5) ==> ""

9.4.2 $div

Usage: $div(x,y,*args)

Category: mathematical

Description:

Divides x by y and returns the integer value (rounded down). Can be used with an

arbitrary number of arguments (i.e.: $div(x,y,z) = (x / y) / z). If an argument is

empty or not an integer, the function will return an empty string. If the second or any

subsequent argument is zero, the function will return an empty string.

Example:

The following statements will return the values indicated:

$div(10,3) ==> "3"

$div(10,-3) ==> "-4"

$div(-10,3) ==> "-4"
(continues on next page)

9.4. Mathematical Functions 129

MusicBrainz Picard, Release v2.12

(continued from previous page)

$div(10,3,2) ==> "1"

$div(10,-3,-2) ==> "2"

$div(10,2,1.5) ==> ""

$div(10,2,0) ==> ""

$div(10,2,x) ==> ""

$div(10,2,) ==> ""

9.4.3 $mod

Usage: $mod(x,y,*args)

Category: mathematical

Description:

Returns the remainder of x divided by y. Can be used with an arbitrary number of

arguments (i.e.: $mod(x,y,z) = (x % y) % z). If an argument is empty or not an

integer, the function will return an empty string. If the second or any subsequent

argument is zero, the function will return an empty string.

Example:

The following statements will return the values indicated:

$mod(0,3) ==> "0"

$mod(10,3) ==> "1"

$mod(10,-3) ==> "-2"

$mod(-13,10) ==> "7"

$mod(13,-10) ==> "-7"

$mod(10,3,1) ==> "0"

$mod(50,17,9) ==> "7"

$mod(51,3,0) ==> ""

$mod(51,a) ==> ""

$mod(a,10) ==> ""

$mod(,10) ==> ""

$mod(10,) ==> ""

$mod(10,3.5) ==> ""

130 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

9.4.4 $mul

Usage: $mul(x,y,*args)

Category: mathematical

Description:

Multiplies x by y. Can be used with an arbitrary number of arguments (i.e.: $mul(x,y,

z) = (x * y) * z). If an argument is empty or not an integer, the function will return an

empty string.

Example:

The following statements will return the values indicated:

$mul(1,2) ==> "2"

$mul(1,2,3) ==> "6"

$mul(1,2,0) ==> "0"

$mul(1,-2,3) ==> "-6"

$mul(-1,2,-3) ==> "6"

$mul(1,2,) ==> ""

$mul(1,2,x) ==> ""

$mul(1,2.5) ==> ""

9.4.5 $sub

Usage: $sub(x,y,*args)

Category: mathematical

Description:

Subtracts y from x. Can be used with an arbitrary number of arguments (i.e.: $sub(x,

y,z) = (x - y) - z). Returns an empty string if an argument is missing or not an integer.

Example:

The following statements will return the values indicated:

$sub(20,15) ==> "5"

$sub(20,-15) ==> "35"

$sub(20,14,1) ==> "5"

$sub(20,10,3,2) ==> "5"

$sub(20,10,3,) ==> ""

$sub(20,10,3,a) ==> ""

$sub(20,10,3.5) ==> ""

9.4. Mathematical Functions 131

MusicBrainz Picard, Release v2.12

9.5 Conditional Functions

These functions are used to test for various conditions and take appropriate actions

depending on the results of the test.

Warning: Formatting the code in your scripts by adding things like spaces, tabs

and newlines could affect the results of conditional tests because these characters

are not ignored. For example,

$set(test,)

$if(

%test%,

$set(test1,Not Empty),

$set(test1,Empty)

)

$if(%test%,$set(test2,Not Empty),$set(test2,Empty))

will return “Not Empty” for %test1%, but “Empty” for %test2%. The different values

are a result of the indentation in the formatted code.

The conditional scripting functions are:

9.5.1 $and

Usage: $and(x,y,*args)

Category: conditional

Description:

Returns true if both x and y are not empty. Can be used with an arbitrary number of

arguments. The result is true if ALL of the arguments are not empty.

Example:

The following statements will return the values indicated:

$set(test,x)

$and(%test%,) ==> "" (False)

$and(%test%,1) ==> "1" (True)

$and(%test%,A) ==> "1" (True)

$and(%test%,$gt(4,5)) ==> "" (False)

$and(%test%,$lt(4,5)) ==> "1" (True)

$and(%test%,,) ==> "" (False)

$and(%test%,,0) ==> "" (False)

$and(%test%,,) ==> "" (False)

$and(%test%, ,) ==> "1" (True)

132 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

9.5.2 $endswith

Usage: $endswith(text,suffix)

Category: conditional

Implemented: Picard 1.4

Description:

Returns true if text ends with suffix. Note that the comparison is case-sensitive.

Example:

The statements below return the values indicated:

$endswith(The time is now,is now) ==> "1" (True)

$endswith(The time is now,is NOW) ==> "" (False)

$endswith(The time is now,) ==> "1" (True)

$endswith(,) ==> "1" (True)

$endswith(,now) ==> "" (False)

9.5.3 $eq

Usage: $eq(x,y)

Category: conditional

Implemented: Picard

Description:

Returns true if x equals y. Note that comparisons are case-sensitive.

Example:

The following statements will return the values indicated:

$eq(,a) ==> "" (False)

$eq(a,) ==> "" (False)

$eq(a,A) ==> "" (False)

$eq(a,a) ==> "1" (True)

9.5. Conditional Functions 133

MusicBrainz Picard, Release v2.12

9.5.4 $eq_all

Usage: $eq_all(x,a1,a2,*args)

Category: conditional

Description:

Returns true if x equals a1 and a2, etc. Can be used with an arbitrary number of

arguments. Note that comparisons are case-sensitive.

Functionally equivalent to $and($eq(x,a1),$eq(x,a2) ...).

Example:

The following statements will return the values indicated:

$eq_all(A,A,B,C) ==> "" (False)

$eq_all(A,a,A,A) ==> "" (False)

$eq_all(A,A,A,A) ==> "1" (True)

$eq_all(,,,) ==> "1" (True)

$eq_all(,a,) ==> "" (False)

9.5.5 $eq_any

Usage: $eq_any(x,a1,a2,*args)

Category: conditional

Description:

Returns true if x equals a1 or a2, etc. Can be used with an arbitrary number of argu-

ments. Note that comparisons are case-sensitive.

Functionally equivalent to $or($eq(x,a1),$eq(x,a2) ...).

Example:

The following statements will return the values indicated:

$eq_any(A,A,B,C) ==> "1" (True)

$eq_any(A,a,A,A) ==> "1" (True)

$eq_any(A,a,b,c) ==> "" (False)

$eq_any(,,,) ==> "1" (True)

$eq_any(,a,b,c) ==> "" (False)

134 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

9.5.6 $gt

Usage: $gt(x,y[,type])

Category: conditional

Description:

Returns “1” (True) if x is greater than y using the comparison specified in type. Pos-

sible values of type are “int” (integer), “float” (floating point), “text” (case-sensitive

text), “nocase” (case-insensitive text) and “auto” (automatically determine the type

of arguments provided), with “auto” used as the default comparison method if type is

not specified. The “auto” type will use the first type that applies to both arguments in

the following order of preference: “int”, “float” and “text”.

Note: The type argument was added in Picard v2.9. Prior to that, if an argument was

missing or was not an integer, the function would return an empty string.

Example:

The following statements will return the values indicated:

$gt(0,-1) ==> "1" (True)

$gt(6,6) ==> "" (False)

$gt(6.6,6.5) ==> "1" (True)

$gt(b,a) ==> "1" (True)

$gt(B,a) ==> "" (False)

$gt(a,6) ==> "1" (True)

$gt(a,6.5) ==> "1" (True)

$gt(6,4,int) ==> "1" (True)

$gt(6.1,4,int) ==> "" (False)

$gt(a,6,int) ==> "" (False)

$gt(4.1,4,float) ==> "1" (True)

$gt(4.2,4.1,float) ==> "1" (True)

$gt(6,4,float) ==> "1" (True)

$gt(a,6.5,float) ==> "" (False)

$gt(2020-01-01,2020-01,text) ==> "1" (True)

$gt(abcd,abc,text) ==> "1" (True)

$gt(ac,abc,text) ==> "1" (True)

$gt(a,A,text) ==> "1" (True)

$gt(a,B,text) ==> "1" (True)

$gt(B,a,text) ==> "" (False)

$gt(B,a,nocase) ==> "1" (True)

(continues on next page)

9.5. Conditional Functions 135

MusicBrainz Picard, Release v2.12

(continued from previous page)

$gt(b,A,nocase) ==> "1" (True)

$gt(a,B,nocase) ==> "" (False)

$gt(A,b,nocase) ==> "" (False)

9.5.7 $gte

Usage: $gte(x,y[,type])

Category: conditional

Description:

Returns “1” (True) if x is greater than or equal to y using the comparison specified

in type. Possible values of type are “int” (integer), “float” (floating point), “text”

(case-sensitive text), “nocase” (case-insensitive text) and “auto” (automatically de-

termine the type of arguments provided), with “auto” used as the default comparison

method if type is not specified. The “auto” type will use the first type that applies to

both arguments in the following order of preference: “int”, “float” and “text”.

Note: The type argument was added in Picard v2.9. Prior to that, if an argument was

missing or was not an integer, the function would return an empty string.

Example:

The following statements will return the values indicated:

$gte(0,-1) ==> "1" (True)

$gte(6,6) ==> "1" (True)

$gte(6.6,6.5) ==> "1" (True)

$gte(b,a) ==> "1" (True)

$gte(B,a) ==> "" (False)

$gte(a,6) ==> "1" (True)

$gte(a,6.5) ==> "1" (True)

$gte(6,4,int) ==> "1" (True)

$gte(6.1,4,int) ==> "" (False)

$gte(a,6,int) ==> "" (False)

$gte(4.1,4,float) ==> "1" (True)

$gte(4.2,4.1,float) ==> "1" (True)

$gte(6,4,float) ==> "1" (True)

$gte(a,6.5,float) ==> "" (False)

$gte(2020-01-02,2020-01,text) ==> "1" (True)

(continues on next page)

136 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

(continued from previous page)

$gte(abcd,abc,text) ==> "1" (True)

$gte(ac,abc,text) ==> "1" (True)

$gte(A,a,text) ==> "" (False)

$gte(a,B,text) ==> "1" (True)

$gte(B,a,text) ==> "" (False)

$gte(A,a,nocase) ==> "1" (True)

$gte(B,a,nocase) ==> "1" (True)

$gte(b,A,nocase) ==> "1" (True)

$gte(a,B,nocase) ==> "" (False)

$gte(A,b,nocase) ==> "" (False)

9.5.8 $if

Usage: $if(condition,then[,else])

Category: conditional

Description:

If condition is not empty it returns then, otherwise it returns else. If else is not pro-

vided, it will be assumed to be an empty string. In addition to (or instead of) returning

values, then and else can be used to conditionally execute other functions.

Example:

The following statements will return the values indicated:

$set(foo,This is foo)

$set(bar,)

$if(%foo%,%foo%,No foo) ==> "This is foo"

$if(%bar%,%bar%,No bar) ==> "No bar"

$if(%bar%,This is bar,No bar) ==> "No bar"

$if(%bar%,This is bar,) ==> ""

$if(%bar%,This is bar) ==> ""

$if(,True,False) ==> "False"

$if(,True,False) ==> "True"

$if(,$set(value,True),$set(value,False)) ==> Sets "value" to "False"

$set(value,$if(%bar%,True,False)) ==> Sets "value" to "False"

9.5. Conditional Functions 137

MusicBrainz Picard, Release v2.12

9.5.9 $if2

Usage: $if2(a1,a2,a3,…)

Category: conditional

Description:

Returns the first non empty argument. Can be used with an arbitrary number of argu-

ments.

Example:

The following statements will return the values indicated:

$set(foo,)

$set(bar,Something)

$if2(%foo%,%bar%,Three) ==> "Something"

$if2(,%bar%,Three) ==> "Something"

$if2(,%foo%,%bar%,Three) ==> "Something"

$if2(%foo%, ,%bar%,Three) ==> " "

$if2(%foo%.,%bar%,Three) ==> "."

$if2(%foo%,,Three) ==> "Three"

$if2(%foo%,,,) ==> ""

9.5.10 $in

Usage: $in(x,y)

Category: conditional

Implemented: Picard

Description:

Returns true, if x contains y. Note that comparisons are case-sensitive.

Example:

The following statements will return the values indicated:

$set(foo,ABCDEFG)

$set(bar,CDE)

$in(%foo%,%bar%) ==> "1" (True)

$in(ABCDE,CDE) ==> "1" (True)

$in(ABCDE,CE) ==> "" (False)

$in(ABCDE,cde) ==> "" (False)

$in(ABCDE,) ==> "1" (True)

$in(,) ==> "1" (True)

138 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

9.5.11 $inmulti

Usage: $inmulti(%x%,y)

Category: conditional

Implemented: Picard 1.0

Description:

Returns true if multi-value variable x contains exactly y as one of its values. Note that

comparisons are case-sensitive.

Example:

The following statements will return the values indicated:

$setmulti(foo,One; Two; Three)

$set(bar,Two)

$inmulti(%foo%,%bar%) ==> "1" (True)

$inmulti(%foo%,Two) ==> "1" (True)

$inmulti(%foo%,two) ==> "" (False)

$inmulti(%foo%,Once) ==> "" (False)

$inmulti(%foo%,w) ==> "" (False)

$inmulti(%foo%,) ==> "" (False)

9.5.12 $is_audio

Usage: $is_audio()

Category: conditional

Implemented: Picard 2.2

Description:

Returns true, if the track being processed is not shown as being a video.

Example:

The following statements will return the values indicated:

$is_audio() ==> "1" (True, if the track is not a video)

$is_audio() ==> "" (False, if the track is a video)

9.5. Conditional Functions 139

MusicBrainz Picard, Release v2.12

9.5.13 $is_complete

Usage: $is_complete()

Category: conditional

Description:

Returns true if every track in the album is matched to a single file.

Note: This function only works in File Naming scripts.

Example:

The following statements will return the values indicated:

$is_complete() ==> "1" (True, if all tracks have been matched)

$is_complete() ==> "" (False, if not all tracks have been matched)

9.5.14 $is_multi

Usage: $is_multi(x)

Category: conditional

Implemented: Picard 2.7

Description:

Returns true, if the argument is a multi-value tag and there is more than one element.

Example:

The following statements will return the values indicated:

$set(foo,a; b; c)

$is_multi(%foo%) ==> "" (False)

$set(bar,)

$is_multi(%bar%) ==> "" (False)

$setmulti(baz,a; b; c)

$is_multi(%baz%) ==> "1" (True)

$is_multi(a; b; c) ==> "1" (True)

$is_multi(a) ==> "" (False)

140 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

9.5.15 $is_video

Usage: $is_video()

Category: conditional

Implemented: Picard 2.2

Description:

Returns true, if the track being processed is shown as being a video.

Example:

The following statements will return the values indicated:

$is_video() ==> "1" (True, if the track is a video)

$is_video() ==> "" (False, if the track is not a video)

9.5.16 $lt

Usage: $lt(x,y[,type])

Category: conditional

Description:

Returns “1” (True) if x is less than y using the comparison specified in type. Possible

values of type are “int” (integer), “float” (floating point), “text” (case-sensitive text),

“nocase” (case-insensitive text) and “auto” (automatically determine the type of ar-

guments provided), with “auto” used as the default comparison method if type is not

specified. The “auto” type will use the first type that applies to both arguments in the

following order of preference: “int”, “float” and “text”.

Note: The type argument was added in Picard v2.9. Prior to that, if an argument was

missing or was not an integer, the function would return an empty string.

Example:

The following statements will return the values indicated:

$lt(-1,0) ==> "1" (True)

$lt(6,6) ==> "" (False)

$lt(6.5,6.6) ==> "1" (True)

$lt(a,b) ==> "1" (True)

$lt(6,a) ==> "1" (True)

$lt(6.5,a) ==> "1" (True)

(continues on next page)

9.5. Conditional Functions 141

MusicBrainz Picard, Release v2.12

(continued from previous page)

$lt(4,6,int) ==> "1" (True)

$lt(4,6.1,int) ==> "" (False)

$lt(6,a,int) ==> "" (False)

$lt(4,4.1,float) ==> "1" (True)

$lt(4.1,4.2,float) ==> "1" (True)

$lt(4,6,float) ==> "1" (True)

$lt(6.5,a,float) ==> "" (False)

$lt(2020-01-01,2020-01-02,text) ==> "1" (True)

$lt(abc,abcd,text) ==> "1" (True)

$lt(abc,ac,text) ==> "1" (True)

$lt(A,a,text) ==> "1" (True)

$lt(B,a,text) ==> "1" (True)

$lt(a,A,text) ==> "" (False)

$lt(a,B,nocase) ==> "1" (True)

$lt(A,b,nocase) ==> "1" (True)

$lt(B,a,nocase) ==> "" (False)

$lt(b,A,nocase) ==> "" (False)

9.5.17 $lte

Usage: $lte(x,y[,type])

Category: conditional

Description:

Returns “1” (True) if x is less than or equal to y using the comparison specified in type.

Possible values of type are “int” (integer), “float” (floating point), “text” (case-sensitive

text), “nocase” (case-insensitive text) and “auto” (automatically determine the type

of arguments provided), with “auto” used as the default comparison method if type is

not specified. The “auto” type will use the first type that applies to both arguments in

the following order of preference: “int”, “float” and “text”.

Note: The type argument was added in Picard v2.9. Prior to that, if an argument was

missing or was not an integer, the function would return an empty string.

Example:

The following statements will return the values indicated:

142 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

$lte(-1,0) ==> "1" (True)

$lte(6,6) ==> "1" (True)

$lte(6.5,6.6) ==> "1" (True)

$lte(a,b) ==> "1" (True)

$lte(6,a) ==> "1" (True)

$lte(6.5,a) ==> "1" (True)

$lte(4,6,int) ==> "1" (True)

$lte(4,6.1,int) ==> "" (False)

$lte(6,a,int) ==> "" (False)

$lte(4,4.1,float) ==> "1" (True)

$lte(4.1,4.2,float) ==> "1" (True)

$lte(4,6,float) ==> "1" (True)

$lte(6.5,a,float) ==> "" (False)

$lte(2020-01-01,2020-02,text) ==> "1" (True)

$lte(abc,abcd,text) ==> "1" (True)

$lte(abc,ac,text) ==> "1" (True)

$lte(A,a,text) ==> "1" (True)

$lte(B,a,text) ==> "1" (True)

$lte(a,A,text) ==> "" (False)

$lte(a,B,nocase) ==> "1" (True)

$lte(A,b,nocase) ==> "1" (True)

$lte(B,a,nocase) ==> "" (False)

$lte(b,A,nocase) ==> "" (False)

9.5.18 $ne

Usage: $ne(x,y)

Category: conditional

Description:

Returns true if x does not equal y. Note that comparisons are case-sensitive.

Example:

The following statements will return the values indicated:

$ne(,a) ==> "1" (True)

$ne(a,) ==> "1" (True)

$ne(a,A) ==> "1" (True)

$ne(a,a) ==> "" (False)

9.5. Conditional Functions 143

MusicBrainz Picard, Release v2.12

9.5.19 $ne_all

Usage: $ne_all(x,a1,a2,*args)

Category: conditional

Description:

Returns true if x does not equal a1 and a2, etc. Can be used with an arbitrary number

of arguments. Note that comparisons are case-sensitive.

Functionally equivalent to $and($ne(x,a1),$ne(x,a2) ...).

Example:

The following statements will return the values indicated:

$ne_all(A,A,B,C) ==> "" (False)

$ne_all(A,a,A,A) ==> "" (False)

$ne_all(A,a,a,a) ==> "1" (True)

$ne_all(,,,) ==> "" (False)

$ne_all(,a,a) ==> "1" (True)

9.5.20 $ne_any

Usage: $ne_any(x,a1,a2,*args)

Category: conditional

Description:

Returns true if x does not equal a1 or a2, etc. Can be used with an arbitrary number

of arguments. Note that comparisons are case-sensitive.

Functionally equivalent to $or($ne(x,a1),$ne(x,a2) ...).

Example:

The following statements will return the values indicated:

$ne_any(A,A,B,C) ==> "1" (True)

$ne_any(A,a,A,A) ==> "1" (True)

$ne_any(A,A,A,A) ==> "" (False)

$ne_any(,,,) ==> "" (False)

$ne_any(,a,,) ==> "1" (True)

144 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

9.5.21 $not

Usage: $not(x)

Category: conditional

Description:

Returns true if x is empty.

Example:

The following statements will return the values indicated:

$set(foo,)

$not(%foo%) ==> "1" (False)

$not(x) ==> "" (True)

$not() ==> "" (True)

$not() ==> Error

9.5.22 $or

Usage: $or(x,y,*args)

Category: conditional

Description:

Returns true if either x or y is not empty. Can be used with an arbitrary number of

arguments. The result is true if ANY of the arguments is not empty.

Example:

The following statements will return the values indicated:

$or(,) ==> "" (False)

$or(,1) ==> "1" (True)

$or(,A) ==> "1" (True)

$or(,$gt(4,5)) ==> "" (False)

$or(,$lt(4,5)) ==> "1" (True)

$or(,,) ==> "" (False)

$or(,,0) ==> "1" (True)

$or(,,) ==> "1" (True)

9.5. Conditional Functions 145

MusicBrainz Picard, Release v2.12

9.5.23 $startswith

Usage: $startswith(text,prefix)

Category: conditional

Implemented: Picard 1.4

Description:

Returns true if text starts with prefix. Note that the comparison is case-sensitive.

Example:

The statements below return the values indicated:

$startswith(The time is now.,The time) ==> "1" (True)

$startswith(The time is now.,The TIME) ==> "" (False)

$startswith(The time is now.,) ==> "1" (True)

$startswith(,The) ==> "" (False)

$startswith(,) ==> "1" (True)

9.6 Information Functions

These functions provide additional system or data information. The information script-

ing functions are:

9.6.1 $countryname

Usage: $countryname(country_code[,translate])

Category: text

Implemented: Picard 2.7

Description:

Returns the name of the country for the specified country code. If the country code is

invalid an empty string will be returned. If translate is not blank, the output will be

translated into the current locale language, otherwise it will be in English.

Examples:

Assuming that the user’s locale has been set to Russian, the following statements will

return the values indicated:

$set(foo,ca)

$countryname(%foo%) ==> "Canada"

$countryname(%foo%,yes) ==> "Канада"

(continues on next page)

146 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

(continued from previous page)

$countryname(ca) ==> "Canada"

$countryname(ca,) ==> "Canada"

$countryname(ca,) ==> "Канада"

$countryname(ca,yes) ==> "Канада"

$countryname(INVALID) ==> ""

$countryname(INVALID,yes) ==> ""

9.6.2 $dateformat

Usage: $dateformat(date,[format],[date order])

Category: information

Implemented: Picard 2.7

Description:

Returns the input date in the specified format, which is based on the standard Python

strftime format codes. If no format is specified the date will be returned in the form

‘2020-02-15’ (year, month, day).

The “year”, “month” and “day” portions of the date must be entered as numbers, and

can be separated by any non-numeric characters. The default order for the input date

is “ymd” (year, month, day). This can be changed by specifying a date order.

Valid entries for date order are:

• ymd - year, month, day (This is the default order.)

• dmy - day, month, year

• mdy - month, day, year

If either the date or format are invalid an empty string will be returned. If an invalid

date order is specified, the default order “ymd” will be used.

Note: Any special characters such as ‘%’, ‘$’, ‘(‘, ‘)’ and ‘\’ will need to be escaped

as shown in the examples below.

Warning: Platform-specific formatting codes should be avoided to help ensure the

portability of scripts across the different platforms. These codes include: remove

zero-padding (e.g.: %-d and %-m on Linux or macOS, and their equivalents %#d and

%#m on Windows); element length specifiers (e.g.: %3Y); and hanging ‘%’ at the end

of the format string.

Examples:

9.6. Information Functions 147

https://strftime.org

MusicBrainz Picard, Release v2.12

The following statements will return the values indicated:

$set(foo,07.21.2021)

$set(bar,mdy)

$set(format,\%Y.\%m.\%d)

$dateformat(%foo%,%format%,%bar%) ==> "2021.07.21"

$dateformat(2021 07 21) ==> "2021-07-21"

$dateformat(2021.07.21) ==> "2021-07-21"

$dateformat(2021-07-21) ==> "2021-07-21"

$dateformat(2021-7-21) ==> "2021-07-21"

$dateformat(2021-7-21,\%B \%d\, \%Y) ==> "July 21, 2021"

$dateformat(2021-07-21,,myd) ==> "2021-07-21"

$dateformat(2021-07-21,,dmy) ==> ""

$dateformat(2021-07-21,,mdy) ==> ""

$dateformat(2021-July-21) ==> ""

$dateformat(2021) ==> ""

$dateformat(2021-07) ==> ""

$dateformat(,) ==> ""

9.6.3 $datetime

Usage: $datetime([format])

Category: information

Implemented: Picard 2.3

Description:

Returns the current date and time in the specified format, which is based on the stan-

dard Python strftime format codes. If no format is specified the date and time will be

returned in the form ‘2020-02-15 14:26:32’.

Note: Any special characters such as ‘%’, ‘$’, ‘(‘, ‘)’ and ‘\’ will need to be escaped

as shown in the examples below.

Warning: Platform-specific formatting codes should be avoided to help ensure the

portability of scripts across the different platforms. These codes include: remove

zero-padding (e.g.: %-d and %-m on Linux or macOS, and their equivalents %#d and

%#m on Windows); element length specifiers (e.g.: %3Y); and hanging ‘%’ at the end

of the format string.

Examples:

148 Chapter 9. Scripting Functions

https://strftime.org

MusicBrainz Picard, Release v2.12

The following statements will return the values indicated:

$datetime() ==> "2020-02-15 14:26:32"

$datetime(\%Y-\%m-\%d \%H:\%M:\%S) ==> "2020-02-15 14:26:32"

$datetime(\%Y-\%m-\%d) ==> "2020-02-15"

$datetime(\%H:\%M:\%S) ==> "14:26:32"

$datetime(\%B \%d, \%Y) ==> "February 15, 2020"

9.6.4 $day

Usage: $day(date[,date order])

Category: information

Implemented: Picard 2.7

Description:

Returns the “day” portion of the input date.

The “year”, “month” and “day” portions of the date must be entered as numbers, and

can be separated by any non-numeric characters. The default order for the input date

is “ymd” (year, month, day). This can be changed by specifying a date order.

Valid entries for date order are:

• ymd - year, month, day (This is the default order.)

• dmy - day, month, year

• mdy - month, day, year

If the date is invalid an empty string will be returned. If an invalid date order is

specified, the default order “ymd” will be used.

Examples:

The following statements will return the values indicated:

$set(foo,07.21.2020)

$set(bar,mdy)

$day(%foo%,%bar%) ==> "21"

$day(2020 07 21) ==> "21"

$day(2020.07.21) ==> "21"

$day(2020-07-21) ==> "21"

$day(2020-07-2) ==> "2"

$noop(Invalid date order)

$day(2020-07-21,dym) ==> "21"

(continues on next page)

9.6. Information Functions 149

MusicBrainz Picard, Release v2.12

(continued from previous page)

$day(,) ==> ""

$day(-07-2020,dmy) ==> ""

9.6.5 $matchedtracks

Usage: $matchedtracks()

Category: information

Implemented: Picard 0.12

Description:

Returns the number of matched tracks within a release.

Note: This function only works in File Naming scripts.

Example:

The following statements will return the values indicated:

$matchedtracks() ==> "3" (if three of the tracks were matched)

9.6.6 $max

Usage: $max(type,x,…)

Category: information

Implemented: Picard 2.9

Description:

Returns the maximum value using the comparison specified in type.

Possible values of type are “int” (integer), “float” (floating point), “text” (case-sensitive

text), “nocase” (case-insensitive text) and “auto” (automatically determine the type

of arguments provided), with “auto” used as the default comparison method if type is

not specified. The “auto” type will use the first type that applies to both arguments in

the following order of preference: “int”, “float” and “text”.

Can be used with an arbitrary number of arguments. Multi-value arguments will be

expanded automatically.

Example:

The following statements will return the values indicated:

150 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

$max(text,) ==> ""

$max(text,,a) ==> "a"

$max(text,a,) ==> "a"

$max(text,abc) ==> "abc"

$max(text,abc,abcd,ac) ==> "ac"

$max(text,A,a) ==> "a"

$max(text,a,B) ==> "a"

$max(text,2020-01-01,2020-01-02,2020-02) ==> "2020-02"

$max(int,1) ==> "1"

$max(int,1,2) ==> "2"

$max(int,1,2,3.1) ==> ""

$max(int,1,2,a) ==> ""

$max(int,1,2,) ==> ""

$max(float,1) ==> "1.0"

$max(float,1,2) ==> "2.0"

$max(float,1,2,3.1) ==> "3.1"

$max(float,2.1,2.11,2.111) ==> "2.111"

$max(float,1,2,a) ==> ""

$max(float,1,2,) ==> ""

$max(nocase,a,B) ==> "B"

$max(nocase,a,B,c) ==> "c"

$setmulti(mv,x; y; z)

$max(text,%mv%) ==> "z"

$max(text,a,%mv%) ==> "z"

$max(text,x; y; z) ==> "z"

$max(int,5,4; 6; 3) ==> "6"

$max(float,5.9,4.2; 6; 3.35) ==> "6.0"

$max(,1,2) ==> "2"

$max(auto,1,2) ==> "2"

$max(,1.1,2) ==> "2.0"

$max(auto,1.1,2) ==> "2.0"

$max(,1,2.1,a) ==> "a"

$max(auto,1,2.1,a) ==> "a"

$max(,a,A) ==> "a"

$max(,a,B) ==> "a"

$max(auto,a,A) ==> "a"

$max(auto,a,B) ==> "a"

9.6. Information Functions 151

MusicBrainz Picard, Release v2.12

9.6.7 $min

Usage: $min(type,x,…)

Category: information

Implemented: Picard 2.9

Description:

Returns the minimum value using the comparison specified in type.

Possible values of type are “int” (integer), “float” (floating point), “text” (case-sensitive

text), “nocase” (case-insensitive text) and “auto” (automatically determine the type

of arguments provided), with “auto” used as the default comparison method if type is

not specified. The “auto” type will use the first type that applies to both arguments in

the following order of preference: “int”, “float” and “text”.

Can be used with an arbitrary number of arguments. Multi-value arguments will be

expanded automatically.

Example:

The following statements will return the values indicated:

$min(text,) ==> ""

$min(text,,a) ==> ""

$min(text,a,) ==> ""

$min(text,abc) ==> "abc"

$min(text,abc,abcd,ac) ==> "abc"

$min(text,A,a) ==> "A"

$min(text,a,B) ==> "B"

$min(text,2020-01-01,2020-01-02,2020-02) ==> "2020-01-01"

$min(int,1) ==> "1"

$min(int,1,2) ==> "1"

$min(int,1,2,3.1) ==> ""

$min(int,1,2,a) ==> ""

$min(int,1,2,) ==> ""

$min(float,1) ==> "1.0"

$min(float,1,2) ==> "1.0"

$min(float,1.1,2,3) ==> "1.1"

$min(float,2.1,2.11,2.111) ==> "2.1"

$min(float,1,2,a) ==> ""

$min(float,1,2,) ==> ""

$min(nocase,a,B) ==> "a"

$min(nocase,a,B,c) ==> "a"

(continues on next page)

152 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

(continued from previous page)

$setmulti(mv,x; y; z)

$min(text,%mv%) ==> "x"

$min(text,a,%mv%) ==> "a"

$min(text,x; y; z) ==> "x"

$min(int,5,4; 6; 3) ==> "3"

$min(float,5.9,4.2; 6; 3.35) ==> "3.35"

$min(,1,2) ==> "1"

$min(auto,1,2) ==> "1"

$min(,1,2.1) ==> "1.0"

$min(auto,1,2.1) ==> "1.0"

$min(,1,2.1,a) ==> "1"

$min(auto,1,2.1,a) ==> "1"

$min(,a,A) ==> "A"

$min(,a,B) ==> "B"

$min(auto,a,A) ==> "A"

$min(auto,a,B) ==> "B"

9.6.8 $month

Usage: $month(date[,date order])

Category: information

Implemented: Picard 2.7

Description:

Returns the “month” portion of the input date.

The “year”, “month” and “day” portions of the date must be entered as numbers, and

can be separated by any non-numeric characters. The default order for the input date

is “ymd” (year, month, day). This can be changed by specifying a date order.

Valid entries for date order are:

• ymd - year, month, day (This is the default order.)

• dmy - day, month, year

• mdy - month, day, year

If the date is invalid an empty string will be returned. If an invalid date order is

specified, the default order “ymd” will be used.

Examples:

The following statements will return the values indicated:

9.6. Information Functions 153

MusicBrainz Picard, Release v2.12

$set(foo,07.21.2020)

$set(bar,mdy)

$month(%foo%,%bar%) ==> "07"

$month(2020 07 21) ==> "07"

$month(2020.07.21) ==> "07"

$month(2020-07-21) ==> "07"

$month(2020-7-21) ==> "7"

$noop(Invalid date order)

$month(2020-07-21,dym) ==> "07"

$month(,) ==> ""

$month(-21-2020,mdy) ==> ""

9.6.9 $year

Usage: $year(date[,date order])

Category: information

Implemented: Picard 2.7

Description:

Returns the “year” portion of the input date.

The “year”, “month” and “day” portions of the date must be entered as numbers, and

can be separated by any non-numeric characters. The default order for the input date

is “ymd” (year, month, day). This can be changed by specifying a date order.

Valid entries for date order are:

• ymd - year, month, day (This is the default order.)

• dmy - day, month, year

• mdy - month, day, year

If the date is invalid an empty string will be returned. If an invalid date order is

specified, the default order “ymd” will be used.

Examples:

The following statements will return the values indicated:

$set(foo,07.21.2020)

$set(bar,mdy)

$year(%foo%,%bar%) ==> "2020"

(continues on next page)

154 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

(continued from previous page)

$year(2020 07 21) ==> "2020"

$year(2020.07.21) ==> "2020"

$year(2020-07-21) ==> "2020"

$year(20-7-21) ==> "20"

$noop(Invalid date order)

$year(2020-07-21,dym) ==> "2020"

$year(,) ==> ""

$year(07-21,mdy) ==> ""

$year(21-07,dmy) ==> ""

$noop(Month is not numeric)

$year(21-July-2020,dmy,1) ==> ""

9.7 Loop Functions

These functions provide the ability to repeat actions based on the contents of a

multi-value variable or the result of a conditional test. The loop scripting functions

are:

9.7.1 $foreach

Usage: $foreach(name,code,separator=”; “)

Category: loop

Implemented: Picard 2.3

Description:

Iterates over each element found in the multi-value variable name, executing code

during each iteration. Before each iteration, the element value is first stored in the

variable _loop_value and the count is stored in the variable _loop_count. This allows

the element or count value to be accessed within the code script.

A literal value representing a multi-value can be substituted for name, using the

separator (or a semicolon followed by a space “; ” if not passed) to coerce the value

into a proper multi-valued variable.

Example:

The following statements will perform the processing indicated:

$noop(Mark all listed tags for deletion from the files.)

$foreach(genre; comment; year,$delete(%_loop_value%))

(continues on next page)

9.7. Loop Functions 155

MusicBrainz Picard, Release v2.12

(continued from previous page)

$noop(Create an 'artist_count' tag with a count of all artists

listed for the track.)

$foreach(%artists%,$set(artist_count,%_loop_count%))

$noop(Create a separate tag for each artist listed for the

track as 'artist_1', 'artist_2', etc.)

$foreach(%artists%,$set(artist_%_loop_count%,%_loop_value%))

9.7.2 $while

Usage: $while(condition,code)

Category: loop

Implemented: Picard 2.3

Description:

Executes code repeatedly until condition no longer evaluates to True. For each loop,

the count is stored in the variable _loop_count. This allows the count value to be

accessed within the code script.

Note: The function limits the maximum number of iterations to 1000 as a safeguard

against accidentally creating an infinite loop.

Example:

The following statement will set return to “Echo… echo… echo…”:

$set(return,Echo...)$while($lt(%_loop_count%,2),$set(return,%return%␣

→˓echo...))

9.8 Miscellaneous Functions

The miscellaneous scripting functions are:

156 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.12

9.8.1 $noop

Usage: $noop(…)

Category: miscellaneous

Description:

Does nothing and always returns an empty string. This is useful for comments or

disabling a block of code.

Example:

The following statements will return the values indicated:

$noop(A comment.) ==> ""

$noop($set(foo,Testing...)) ==> "" (and "foo" is not set)

9.8. Miscellaneous Functions 157

CHAPTER

TEN

USING PICARD

There are four stages to using Picard to process your audio files:

10.1 Retrieving Album Information

This stage identifies the album on MusicBrainz that will provide the information used

for tagging the files, and retrieves the metadata from the MusicBrainz database. There

are a few different methods available, depending on the information currently available

on your system (e.g.: metadata existing in the files, or having the source CD available).

There are basically four main methods used to retrieve album information from the

MusicBrainz database.

10.1.1 Lookup CD or Ripper Log

This is the preferred method of automatically identifying the album to retrieve, and

should be used when you have the CD or supported ripper log available. Typically this

would be used right after ripping the audio files from the CD. When initiated, the table

of contents (TOC) is read from the CD and a request is sent to MusicBrainz to return

a list of the releases that match the TOC. If there are any matches, then they will be

listed for you to select the one to use. If there are no matches or none of the matches

are correct, you can search the database manually for the matching album, and are

given the option of attaching the TOC from your CD to the selected release for future

lookup.

The steps to follow to lookup a CD are:

1. Make sure the CD is inserted in the drive, and select “Tools → Lookup CD… →
(drive to use)”. The CD TOC will be calculated and sent to MusicBrainz. Alter-

nately, you can use a supported ripper log file to lookup the CD using the “Tools

→ Lookup CD→ From CD ripper log file…” command. This will open a file browser

dialog to allow you to select the log file to process. Either method will query the

MusicBrainz database and display a list of matching releases.

158

MusicBrainz Picard, Release v2.12

2. Select the correct release from the list and click on the Load into Picard button.

This will load the information for the release into Picard.

A music symbol in front of a track number in the right-hand pane indicates that

there has been no file assigned to the track.

3. If there are no matches or none of the matches are correct, use the Submit disc

ID option to locate the correct release. Enter the release title or artist and initiate

the search. You will be provided with a list of the releases that match your search

criterion and have the same number of tracks as your CD TOC.

10.1. Retrieving Album Information 159

MusicBrainz Picard, Release v2.12

4. Use the green arrow to load the information for a release into Picard. In

addition, you can select the release and attach the CD TOC.

5. If none of the releases displayed are correct, you have the option to add a new

release (with some information automatically included).

160 Chapter 10. Using Picard

MusicBrainz Picard, Release v2.12

10.1.2 Lookup Files

If you don’t have the CD available, and your files are grouped by album, this is the

preferred method of automatically identifying the album to retrieve. This is done by

grouping the files into album clusters in Picard and then perform the lookup. Picard

will try to match the entire set of clustered files to the same release.

The steps to follow to lookup files are:

1. Add your files using “Files → Add Files…” or “Files → Add Folder…”. For ease

of use it is recommended to use the internal File Browser to manage file system

interactions. This is enabled from “View → File Browser”.

2. Drag the selected directory or files to the “Unclustered Files” folder, and wait for

10.1. Retrieving Album Information 161

MusicBrainz Picard, Release v2.12

Picard to process the files - the names will turn from grey to black.

3. Use “Tools → Cluster” to group the files into album clusters.

4. Select a clustered album and use “Tools → Lookup” to lookup the cluster. De-

pending on your previous metadata, the album will show up in the right-hand

pane.

162 Chapter 10. Using Picard

MusicBrainz Picard, Release v2.12

A music symbol in front of a track number in the right-hand pane indicates that

there has been no file assigned to the track.

If you’re not sure that the album retrieved is correct, you can use “Tools → Show

other album versions…” to open a window displaying all releases matched. From

this window, you can select a different matching version to use, or refine the

search criteria and perform a new search.

10.1. Retrieving Album Information 163

MusicBrainz Picard, Release v2.12

If no album was retrieved, or if the album retrieved was incorrect, you may have

to try a different method such as scanning the files or a manual lookup.

10.1.3 Scan Files

If your files are not grouped into albums and you don’t have the CD available, this

is the only remaining method of automatically identifying the album to retrieve. This

is done by scanning the files to obtain their AcoustID fingerprints and then perform

the lookup for the individual files by fingerprint. The album(s) matching the files will

show up in the right-hand pane based on a “best match” using the Preferred Releases

settings in the Metadata options.

The steps to follow to scan and lookup files are:

1. Add your files using “Files → Add Files…” or “Files → Add Folder…”. For ease

of use it is recommended to use the internal File Browser to manage file system

interactions. This is enabled from “View → File Browser”.

2. Drag the selected directory or files to the “Unclustered Files” folder, and wait for

Picard to process the files - the names will turn from grey to black.

164 Chapter 10. Using Picard

MusicBrainz Picard, Release v2.12

3. Select the desired files and use “Tools→ Scan” to scan the files to determine their

AcoustID fingerprints and lookup using this information. The album(s) matching

the files will show up in the right-hand pane based on a “best match” using the

Preferred Releases settings in the Metadata options.

A music symbol in front of a track number in the right-hand pane indicates that

there has been no file assigned to the track.

If no album was retrieved, or if the album retrieved was incorrect, you may have

to try a different method such as clustering the files or a browser lookup.

10.1. Retrieving Album Information 165

MusicBrainz Picard, Release v2.12

10.1.4 Lookup in Browser

If none of the automated methods are available, or don’t produce the desired results,

you have the option of retrieving the album information by having Picard initiate a

search on the MusicBrainz website using your web browser. There are two methods

of initiating this search. The first method searches based on the tag information from

the selected files.

The steps to follow to manually lookup an album on MusicBrainz are:

1. Add your files using “Files → Add Files…” or “Files → Add Folder…”. For ease

of use it is recommended to use the internal File Browser to manage file system

interactions. This is enabled from “View → File Browser”.

2. Drag the selected directory or files to the “Unclustered Files” folder, and wait for

Picard to process the files - the names will turn from grey to black.

166 Chapter 10. Using Picard

MusicBrainz Picard, Release v2.12

3. Use “Tools → Cluster” to group the files into album clusters if you want lookup a

cluster.

4. Select a file or clustered album and use “Tools → Lookup in Browser” to initiate

the search in your browser using the currently available metadata.

10.1. Retrieving Album Information 167

MusicBrainz Picard, Release v2.12

5. If you want to revise or refine your search criteria, make the desired changes at

the bottom of the web page and click the “Search” button to re-initiate the search.

6. Use the green arrow to load the information for a release into Picard.

168 Chapter 10. Using Picard

MusicBrainz Picard, Release v2.12

7. A music symbol in front of a track number in the right-hand pane indicates that

there has been no file assigned to the track.

10.1.5 Manual Lookup

The second browser search method uses manually entered information as the search

criterion.

The steps to follow to manually lookup an album on MusicBrainz are:

1. Add your files using “Files → Add Files…” or “Files → Add Folder…”. For ease

of use it is recommended to use the internal File Browser to manage file system

interactions. This is enabled from “View → File Browser”.

10.1. Retrieving Album Information 169

MusicBrainz Picard, Release v2.12

2. Drag the selected directory or files to the “Unclustered Files” folder, and wait for

Picard to process the files - the names will turn from grey to black.

3. Enter your search information into the search box and select the type of records

to search, then click the magnifying glass symbol to initiate the search. This will

open the MusicBrainz website in your browser.

4. Continue to drill down by clicking on the appropriate links until you get to the

release that you want to retrieve.

170 Chapter 10. Using Picard

https://musicbrainz.org

MusicBrainz Picard, Release v2.12

5. Use the green arrow to load the information for a release into Picard.

6. A music symbol in front of a track number in the right-hand pane indicates that

there has been no file assigned to the track.

10.1. Retrieving Album Information 171

MusicBrainz Picard, Release v2.12

Note: If you enter a link to the desired entry (e.g.: https://musicbrainz.org/

release/9383a6f5-9607-4a36-9c68-8663aad3592b) in the search box in Picard, the

entry will be loaded directly without opening a browser window.

10.2 Matching Files to Tracks

This stage is where individual files are matched to specific tracks in the information

retrieved from the MusicBrainz database.

Once you have retrieved the desired album information into the right-hand pane, the

next step is to match the files from the left-hand pane to the corresponding track in the

right-hand pane. A music symbol in front of a track number in the right-hand pane indi-

cates that there has been no file assigned to the track. In some cases, Picard may have

already tried to do the matching for you. If the matching wasn’t done automatically,

drag the appropriate files onto the appropriate album and track.

172 Chapter 10. Using Picard

MusicBrainz Picard, Release v2.12

Note: If you drag and drop multiple files onto a specific track the first selected file

will be matched to the track on which you dropped the files. The rest of the selected

files will be matched to the following tracks in order. This allows you to quickly match

multiple files to a sequence of tracks. If you want to match all files to a single track

instead you can hold the Alt key while dropping the files.

If you drop multiple files onto an album Picard will try to match the files to the tracks

based on the metadata.

Depending on your previous metadata, Picard will try to guess the matching tracks.

The order is green > yellow > orange > red, where green is the best match. If you

are seeing a lot of red and orange, it could mean that Picard has guessed incorrectly,

or that your files didn’t have a lot of previous metadata to work with. If this is the

case, it’s recommended to select a track and compare the “Original Values” and “New

Values” in the metadata pane. If there is an incorrect match, simply drag the track to

its correct spot in the right-hand pane.

10.2. Matching Files to Tracks 173

MusicBrainz Picard, Release v2.12

Right-clicking an item in the track list brings up a menu of commands, including

“Info”, “Open in Player”, “Open Containing Folder”, “Search for similar tracks”, “Lookup

in Browser”, “Generate AcoustID Fingerprints”, “Save” and “Remove”. In addition,

you can re-run any associated plugins or scripts against only the selected item.

Right-clicking an items in the left-hand pane will bring up a similar menu of commands.

When you select an item in the right-hand pane, the original and new metadata for the

item is displayed. Right-clicking a line in the tag list brings up a menu of commands,

including “Edit”, “Add to ‘Preserved Tags’ List”, “Remove” and “Add New Tag”, along

with an option to display the changed tags first.

10.3 Setting the Cover Art

Depending on the option settings, you can change or confirm the cover art to save

with a track or album.

Once the release information has been downloaded, selecting an album or track in the

right-hand pane will display both the original and new coverart for the selected item.

You can easily replace the coverart image used for the selected item by dragging the

image from the file browser and dropping it on the New Cover Art image.

174 Chapter 10. Using Picard

MusicBrainz Picard, Release v2.12

You can also choose a local file as cover art by right clicking on the image and selecting

“Choose local file…” from the menu.

The menu also provides additional options including “Show more details”, “Keep orig-

inal cover art”, and options for the way that images dropped onto the selection are

processed. Selecting “Show more details” will bring up a new window as:

10.3. Setting the Cover Art 175

MusicBrainz Picard, Release v2.12

Double-clicking an image will open the image file in the system default program for

the image type.

10.4 Saving Updated Files

This stage is where Picard updates the matched files with the metadata retrieved in

the first stage, based on the settings configured in the Options. This may also include

renaming the files and placing them in a different directory.

When you are satisfied that your files have been properly matched to tracks in the

right-hand pane, select the album you want to save in the right-hand pane and use

“File → Save” to save the files. A green check mark means the file was saved to its

proper location.

176 Chapter 10. Using Picard

MusicBrainz Picard, Release v2.12

Once the files have been saved successfully, you can remove the album from the

right-hand pane by selecting it and using “Edit → Remove”. Note that this only re-

moves the album from Picard and does not remove the files themselves.

10.4. Saving Updated Files 177

CHAPTER

ELEVEN

WORK FLOW RECOMMENDATIONS

This section provides some recommended workflows for various tagging scenarios.

These workflows are based on what are believed to be best practices.

The scenarios covered include:

1. When the CD is available

2. When the ripper log file is available

3. When files are grouped by album

4. When files are not grouped but have some metadata

5. When files are not grouped and have little or no existing metadata

Note: Regardless of whether or not it’s one of the the workflows listed, it is strongly

recommended that you make a backup copy of the files being processed and initially

process a copy of your music files. This will help to ensure that Picard is properly

configured (e.g.: settings, scripts, and plugins) and produces the expected and desired

results.

11.1 When the CD is available

This is perhaps the best case scenario, because it provides the greatest chance of

tagging your music files with the most accurate match from the MusicBrainz database.

It is also one of the easier methods for looking up the release.

1. Rip the CD to music files

Extract the music filed from the CD using your favorite ripping program (e.g.:

Exact Audio Copy forWindows, X Lossless Decoder (XLD) formacOS, orWhip-

per for Linux). The format for the output files depends on your personal pref-

erence and the formats supported by your player. A popular format is FLAC,

which is a compressed lossless format.

2. Lookup the CD on MusicBrainz

178

http://exactaudiocopy.de/
https://tmkk.undo.jp/xld/index_e.html
https://github.com/whipper-team/whipper
https://github.com/whipper-team/whipper

MusicBrainz Picard, Release v2.12

With the CD in the drive, it can be looked up automatically using the “Tools→
Lookup CD” command. See the Lookup CD or Ripper Log section for detailed

instructions.

3. Select the correct release

A list of all releases matching the toc of the CD will be displayed for selection,

with an option to submit the disc id if none of the releases are a match to

your CD. Before proceeding, please check to ensure that the release you se-

lect properly matches your CD (e.g.: release country, date and label, catalog

number, barcode, media type, and cover art). This is especially important if

you are going to submit any information such as acoustic features to Acous-

ticBrainz or AcoustID fingerprints.

4. Load the files

Drag the files or folder from the browser to the “Unclustered Files” section

in the left-hand pane. You do not need to scan or cluster them.

5. Match the files to the tracks on the release

Drag the files from the left-hand pane and drop them on the release in the

right-hand pane. Check that each track on the release is associated with

only one file. The release icon should turn gold. See the Matching Files to

Tracks section for details.

6. Verify the metadata and cover art

Check that the metadata and cover art image for the release and tracks are

what you want. Adjust if required. See the Setting the Cover Art section for

details.

7. Save the files

Save the files using the “File → Save” command. See the Saving Updated

Files section for details.

8. Calculate and submit AcoustID fingerprints

This step is optional, but appreciated because it will help identify the files

for others to look up for tagging.

11.1. When the CD is available 179

MusicBrainz Picard, Release v2.12

Select the album entry in the right-hand pane and calculate the AcoustID fin-

gerprints using “Tools → Generate AcoustID Fingerprints”. Once the finger-

prints have been calculated, submit them using “Files→ Submit AcoustIDs”.

Note: AcoustID fingerprints should only be submitted after the files have

been tagged with MusicBrainz metadata, and you have verified that the files

have been matched to the correct track on the proper release.

11.2 When the ripper log file is available

This option was added to Picard in version 2.8, and supports the use of log files pro-

duced by supported popular CD file rippers. Because the log files of these rippers

contain sufficient information to generate the CD table of contents they can be used

in place of reading the CD. As with reading the CD itself, this method provides the

greatest chance of tagging your music files with the most accurate match from the

MusicBrainz database. It is also one of the easier methods for looking up the release.

1. Lookup the CD on MusicBrainz

Use the ripper log file to look up the release automatically by selecting the

“Tools → Lookup CD → From CD ripper log file…” command. This will open

a file browser dialog to allow you to select the log file to process. See the

Lookup CD or Ripper Log section for detailed instructions.

2. Select the correct release

A list of all releases matching the toc of the CD will be displayed for selection,

with an option to submit the disc id if none of the releases are a match to

your CD. Before proceeding, please check to ensure that the release you se-

lect properly matches your CD (e.g.: release country, date and label, catalog

number, barcode, media type, and cover art). This is especially important if

you are going to submit any information such as acoustic features to Acous-

ticBrainz or AcoustID fingerprints.

3. Load the files

180 Chapter 11. Work Flow Recommendations

MusicBrainz Picard, Release v2.12

Drag the files or folder from the browser to the “Unclustered Files” section

in the left-hand pane. You do not need to scan or cluster them.

4. Match the files to the tracks on the release

Drag the files from the left-hand pane and drop them on the release in the

right-hand pane. Check that each track on the release is associated with

only one file. The release icon should turn gold. See the Matching Files to

Tracks section for details.

5. Verify the metadata and cover art

Check that the metadata and cover art image for the release and tracks are

what you want. Adjust if required. See the Setting the Cover Art section for

details.

7. Save the files

Save the files using the “File → Save” command. See the Saving Updated

Files section for details.

8. Calculate and submit AcoustID fingerprints

This step is optional, but appreciated because it will help identify the files

for others to look up for tagging.

Select the album entry in the right-hand pane and calculate the AcoustID fin-

gerprints using “Tools → Generate AcoustID Fingerprints”. Once the finger-

prints have been calculated, submit them using “Files→ Submit AcoustIDs”.

Note: AcoustID fingerprints should only be submitted after the files have

been tagged with MusicBrainz metadata, and you have verified that the files

have been matched to the correct track on the proper release.

11.3 When files are grouped by album

If the music files to be processed are already grouped into folders by album, then

the process of looking up the release in the MusicBrainz database is greatly simplified

because Picard works best when processing one album at a time.

1. Load the files

Drag the files or folder from the browser to the “Unclustered Files” section

in the left-hand pane.

2. Cluster and lookup the files

Select the files in the left-hand pane and combine them into an album cluster

using the “Tools → Cluster” command. Select the cluster in the left-hand

pane and initiate the lookup using the “Tools → Lookup” command. See the

Lookup Files section for details.

11.3. When files are grouped by album 181

MusicBrainz Picard, Release v2.12

3. Select the correct release

If there is only one release thatmatches the lookup, it will be loaded automat-

ically. Before proceeding, please check to ensure that it properly matches

your album (e.g.: release country, date and label, catalog number, barcode,

media type, and cover art). This is especially important if you are going to

submit any information such as AcoustID fingerprints.

4. Match the files to the tracks on the release

Drag the files from the left-hand pane and drop them on the release in the

right-hand pane. Check that each track on the release is associated with

only one file. The release icon should turn gold. See the Matching Files to

Tracks section for details.

5. Verify the metadata and cover art

Check that the metadata and cover art image for the release and tracks are

what you want. Adjust if required. See the Setting the Cover Art section for

details.

6. Save the files

Save the files using the “File → Save” command. See the Saving Updated

Files section for details.

7. Calculate and submit AcoustID fingerprints

This step is optional, but appreciated because it will help identify the files

for others to look up for tagging.

Select the album entry in the right-hand pane and calculate the AcoustID fin-

gerprints using “Tools → Generate AcoustID Fingerprints”. Once the finger-

prints have been calculated, submit them using “Files→ Submit AcoustIDs”.

Note: AcoustID fingerprints should only be submitted after the files have

been tagged with MusicBrainz metadata, and you have verified that the files

have been matched to the correct track on the proper release.

11.4 When files are not grouped but have some metadata

In this situation, you will need to feed batches of files to Picard to process. In order to

minimize the performance impact, it is recommended to keep the batches relatively

small (i.e.: approximately 200 files at most in a single batch). Picard will try to group

them into clusters based on the metadata currently existing in the files.

Note: This workflow will likely only partially match the files to a release in each batch

processed. This means that an album may not be fully matched, tagged and renamed

182 Chapter 11. Work Flow Recommendations

MusicBrainz Picard, Release v2.12

until multiple batches have been processed.

1. Load the files

Drag the batch of files to process from the browser to the “Unclustered Files”

section in the left-hand pane.

2. Cluster and lookup the files

Select the files in the left-hand pane and combine them into album clusters

using the “Tools → Cluster” command. Picard will attempt to cluster the

files based on their existing metadata. Select the desired cluster(s) in the

left-hand pane and initiate the lookup using the “Tools→ Lookup” command.

See the Lookup Files section for details.

3. Match the files to the tracks on the release

Drag the files from the left-hand pane and drop them on the release in the

right-hand pane. Check that each track on the release is associated with

only one file. The release icon will likely remain silver, indicating that not all

tracks have been matched to files. See the Matching Files to Tracks section

for details.

4. Verify the metadata and cover art

Check that the metadata and cover art image for the release and tracks are

what you want. Adjust if required. See the Setting the Cover Art section for

details.

5. Save the files

Save the files using the “File → Save” command. See the Saving Updated

Files section for details.

Note: It is not recommended to submit AcoustID fingerprints for files matched in

this way, because it is virtually impossible to verify that your files actually match the

recordings being matched.

11.5 When files are not grouped and have little or no ex-

isting metadata

This is perhaps the worst case scenario, because it provides the greatest chance of

tagging your music files with an incorrect match from the MusicBrainz database.

In this situation, you will need to feed batches of files to Picard to process. In order to

minimize the performance impact, it is recommended to keep the batches relatively

small (i.e.: approximately 200 files at most in a single batch). Picard will try to group

them into clusters based on their AcoustID fingerprints.

11.5. When files are not grouped and have little or no existing metadata183

MusicBrainz Picard, Release v2.12

Note: This workflow will likely only partially match the files to a release in each batch

processed. This means that an album may not be fully matched, tagged and renamed

until multiple batches have been processed.

1. Load the files

Drag the batch of files to process from the browser to the “Unclustered Files”

section in the left-hand pane.

2. Scan the files

Select the files in the left-hand pane and scan them using the “Tools→ Scan”

command. Picard will attempt to calculate the AcoustID fingerprint for each

of the files and then retrieve releases with matching recordings. See the

Scan Files section for details.

3. Match the files to the tracks on the release

Drag the files from the left-hand pane and drop them on the release in the

right-hand pane. Check that each track on the release is associated with

only one file. The release icon will likely remain silver, indicating that not all

tracks have been matched to files. See the Matching Files to Tracks section

for details.

4. Verify the metadata and cover art

Check that the metadata and cover art image for the release and tracks are

what you want. Adjust if required. See the Setting the Cover Art section for

details.

5. Save the files

Save the files using the “File → Save” command. See the Saving Updated

Files section for details.

184 Chapter 11. Work Flow Recommendations

CHAPTER

TWELVE

OTHER PICARD TASKS

12.1 Attaching a Disc ID to a Release

Disc IDs are very useful for identifying CDs and allowing MusicBrainz to know the length

of tracks on a CD. Thus, it is very valuable to add them when submitting a new CD

release or when you have a CD release that does not have a Disc ID attached.

Warning: Please do not add DiscIDs from CDs that are burned at home.

The steps to follow to submit a disc id are:

1. Lookup the CD

Make sure the CD is inserted in the drive, and select “Tools → Lookup CD…

→ (drive to use)”. The CD toc will be calculated and sent to MusicBrainz.

Alternately, you can use an EAC, XLD or Whipper ripper log file to lookup the

CD using the “Tools → Lookup CD → From EAC / XLD / Whipper log file…”

command. This will open a file browser dialog to allow you to select the

log file to process. Either method will query the MusicBrainz database and

display a list of matching releases.

185

MusicBrainz Picard, Release v2.12

2. Review list of matching releases

If the target release appears in this list, the disc id has already been attached

and you do not need to do anything further. If there are no matches found or

the desired target release does not appear in the list, use the “Submit disc

ID” option to locate the correct release. Enter the release title or artist and

initiate the search. You will be provided with a list of the releases that match

your search criterion and have the same number of tracks as your CD TOC.

Note: If you search by artist, use the radio button next to the artist’s name

to select the desired artist. If you click on the artist’s name link, you will not

be allowed to attach the disc id to any of the releases displayed.

186 Chapter 12. Other Picard Tasks

MusicBrainz Picard, Release v2.12

3. Select the release

Select the desired target release frm the list displayed by clicking the radio

button next to the release, and then click the “Attach CD TOC” button below

the list of releases. This will prepare an edit to attach the disc id to the

release. You then need to add an appropriate edit note, and submit the edit.

4. Add release if missing

If none of the releases displayed are correct, you have the option to add a

new release (with some information automatically included). The disc id will

automatically be attached to the new release when the edit is saved.

12.1. Attaching a Disc ID to a Release 187

MusicBrainz Picard, Release v2.12

12.2 Submitting Acoustic Fingerprints

Acoustic fingerprints are very useful for identifying tracks and recordings, allowing

them to be looked up in the MusicBrainz database. Thus, it is very valuable to add them

when you are tagging files. Note that an acoustic fingerprint is not an AcoustID. Please

see the Understanding Acoustic Fingerprinting and AcoustIDs tutorial for additional

information.

Note: When using Picard to submit acoustic fingerprints, it is recommended to en-

able the Fingerprint column in the table view in the right-hand pane. This is done

by right-clicking the column header and checking the box beside “Fingerprint status”.

This will display an icon indicating whether the AcoustID was calculated and whether

it ready for submission (red = unsubmitted, grey = already submitted).

There are two methods for submitting acoustic fingerprints, depending on the work-

flow that you are using to identify the releases that you are tagging. Note that both

methods require that you first match your audio files to release and track information

from the MusicBrainz database. See the Retrieving Album Information and Matching

Files to Tracks sections for more information about retrieving release information and

matching audio files to releases.

The steps to follow to submit acoustic fingerprints for each of the two workflows are:

12.2.1 Submitting when using Scan to identify the release

1. Load files into the clustering pane. Select the files and click the “Scan” button, or

select “Tools → Scan”.

188 Chapter 12. Other Picard Tasks

MusicBrainz Picard, Release v2.12

2. If the files are matched to a track and move to the right-hand pane, they already

exist in the AcoustID database and do not need to be re-submitted. The “Submit”

button will remain disabled.

3. If the files are not matched, or you manually move them to match to a different

track they could be submitted. The AcoustID icon for the tracks will show up in

red (i.e.: unsubmitted status) and the “Submit” button will be enabled.

12.2. Submitting Acoustic Fingerprints 189

MusicBrainz Picard, Release v2.12

4. Clicking the “Submit” button will only submit the fingerprints for the files identi-

fied in Step 3. The AcoustID icon for the tracks will change to grey (i.e.: submitted

status) and the “Submit” button will be disabled.

12.2.2 Submitting when not using Scan to identify the release

1. Make sure that the files are properly matched to tracks on a release in the

right-hand pane.

190 Chapter 12. Other Picard Tasks

MusicBrainz Picard, Release v2.12

2. Select the files in the right-hand pane and select “Tools → Generate AcoustID

fingerprints”. This will calculate the acoustic fingerprints for the selected files.

Note: The “Generate AcoustID fingerprints” action button can be added to the

button bar by changing the settings in the User Interface options.

The AcoustID icon for the tracks will show up in red (i.e.: unsubmitted status) and

the “Submit” button will be enabled.

12.2. Submitting Acoustic Fingerprints 191

MusicBrainz Picard, Release v2.12

3. Clicking the “Submit” button will submit the fingerprints for the files. The AcoustID

icon for the tracks will change to grey (i.e.: submitted status) and the “Submit”

button will be disabled.

192 Chapter 12. Other Picard Tasks

MusicBrainz Picard, Release v2.12

12.3 Generating tags from file names

Sometimes files have poor quality tags or no tags at all, but the file names are well

structured and follow a pattern. In this case you can use “Tools → Tags From File

Names…” to generate the tags from the file names.

12.3.1 Basic usage

To use this tool, select one or more files loaded into Picard and open the Tags From

File Names dialog from the menu at “Tools → Tags From File Names…”. The dialog

will show you a list of filenames and an input field at the top where you can enter a

matching pattern.

The matching pattern can consist of Picard tag names enclosed in % signs and other

characters that are matched verbatim. For the tag names you can use predefined

names such as %artist%, %album%, or %title% (see Tags & Variables) or use custom

names. There are a few predefined patterns available to select from, but you can also

adjust them or set your own.

If your files for example consist of a track number and track title separated by a space

(e.g. 04 Heart of Gold.mp3) you can use the matching pattern %tracknumber%

%title%. Should the track number and title be separated by for example a hyphen

like 04 - Heart of Gold.mp3 the pattern needs to also include this separator, like

%tracknumber% - %title%.

Clicking on the “Preview” button next to the matching pattern will show a preview of

the extracted tags for each file name. Once you are satisfied with the result, you can

accept the changes with the “Ok” button. The changed tags will be set for the files.

Note that the changes will not be saved automatically, you still need to save the files

if you want the tags to be written (see Saving Updated Files).

12.3. Generating tags from file names 193

MusicBrainz Picard, Release v2.12

12.3.2 Matching folders

The pattern can also match the parent folders of the file. To match for folders use a

slash (/) as separator. If for example the file is in a folder named after the album,

which in turn is inside a folder named after the artist (i.e. Neil Young/Harvest/04

Heart of Gold.mp3) you could match the artist, album, track number and title with a

pattern of %artist%/%album%/%tracknumber% - %title%.

12.3.3 Replace underscores with spaces

Sometimes files have been named without spaces and use underscores instead. For

example a file could be named 04_Heart_of_Gold.mp3. By default the title would

get extracted as “Heart_of_Gold”. In this case enable the checkbox “Replace under-

scores with spaces” and use a pattern like %tracknumber%_%title% to extract the title

properly as “Heart of Gold”.

12.3.4 Ignoring parts of the file name

Sometimes you don’t want to include parts of the file name in your tags and just want

to ignore them. The pattern must always match the entire file name, though. In this

case you can use a hidden variable for the parts of the file name you do not want to

match to an actual tag. Hidden variables start with an underscore like %_dummy%. This

variable will still be available on the file for Scripting, but will not get written to the

actual file tags on saving.

One example might be if you want to extract only the track number from a file name

like 04 Are You Ready for the Country_.mp3. Maybe the track number tag is miss-

ing in the file, but the title tag is already properly set. You could use the pattern

%tracknumber% %_filetitle%. This would extract the tracknumber tag properly, but

would extract the rest of the file name to a hidden variable %_filetitle% which would

194 Chapter 12. Other Picard Tasks

MusicBrainz Picard, Release v2.12

not get written to the file tags. The name %_filetitle% is arbitrarily chosen, it just

needs to start with an underscore.

Note: Parsing hidden variables from file names is supported since Picard 2.5. Earlier

versions would create an actual tag which would get stored to the tags. If you are

using a Picard version older than 2.5 you will need to remove the unwanted tags before

saving the files.

12.3. Generating tags from file names 195

MusicBrainz Picard, Release v2.12

12.4 Submitting Cluster as a Release

Picard can assist you in submitting information to the MusicBrainz database by auto-

matically populating the submission form on the website with data from your files. This

is typically used when you have the music files for an album, but it is not yet available

on MusicBrainz.

12.4.1 Submitting multiple tracks as a cluster

To use this functionality, the steps to follow are:

1. Load the files

Drag the batch of files to process from the browser pane to the “Unclustered

Files” section in the clustering pane.

196 Chapter 12. Other Picard Tasks

MusicBrainz Picard, Release v2.12

2. Cluster the files

Select the files in the clustering pane and combine them into album clusters

using the “Tools→ Cluster” command. Picard will attempt to cluster the files

based on their existingmetadata. Depending on the quality of themetadata,

you may need to manually add items to the cluster or remove items from

the cluster to ensure that it is complete for the album, and does not contain

any additional files.

12.4. Submitting Cluster as a Release 197

MusicBrainz Picard, Release v2.12

3. Submit the cluster

Once you have the proper files in the cluster and it is complete for the album,

you can submit it to MusicBrainz by selecting the cluster and right-click to

bring up the context menu. From there you should see an option to “Submit

cluster as release…”.

198 Chapter 12. Other Picard Tasks

MusicBrainz Picard, Release v2.12

4. Confirm submitted information

When the option is selected, the system will submit a request to add the

information to MusicBrainz, and you will be presented with a confirmation

screen in your browser. You can see the information that will be submitted

by expanding the “Data submitted with this request” link.

5. Complete the submission

Selecting Continue will open an “Add Release” edit screen with the fields

populated with your information. From here you can check and submit your

edit as if you had entered all of the information manually.

Note: Before submitting the edit, you should check that all of the infor-

mation has been correctly entered in accordance with the MusicBrainz Style

Guides and that the artist and release groups have been matched to existing

items as appropriate. You should also add an edit note citing the source of

the information.

12.4.2 Submitting a single track

You can also use this feature to submit a single track as a release or as a standalone

recording. To do this, right-click the file and select either “Submit file as standalone

recording…” or “Submit file as release…” as appropriate. Again, be sure to confirm

the information has been correctly entered in accordance with the MusicBrainz Style

Guides and that the artist and release groups have been matched to existing items as

appropriate. You should also add an edit note citing the source of the information.

12.4. Submitting Cluster as a Release 199

https://musicbrainz.org/doc/Style
https://musicbrainz.org/doc/Style
https://musicbrainz.org/doc/Style
https://musicbrainz.org/doc/Style

CHAPTER

THIRTEEN

OPTION PROFILES

As of version 2.7, Picard supports multiple profiles that can allow the user to quickly

switch between option settings.

13.1 How Option Profiles Work

A profile is defined by a set of options it manages. For example, one profile may include

settings for file naming such as the target directory and which file naming script to use,

while another profile may include different settings for the same options or different

options entirely (or some of each). Profiles are stacked and processed in the order

specified by the user, from top to bottomwith the lowest level being the system’s “user

settings” profile. Each user-defined profile can be enabled or disabled independently

from the other user-defined profiles. The system’s “user settings” profile is always

enabled and includes all options.

When an option value is retrieved as part of Picard’s processing, it comes from the

first enabled profile in the stack that manages that option. Initially, the profile stack

contains only the system’s “user settings” profile, which holds the default settings for

the user.

13.2 Example of Using Profiles

For this example, the user would like to define a set of options with alternate values,

in this case a target directory where audio files are saved (option move_files_to).

The user creates a new profile (named “TargetMyDir”), adds the option move_files_to

to it, and enables this profile. The stack is now:

[x] TargetMyDir move_files_to

[x] user settings move_files_to [plus all other settings]

They change the value of move_files_to (to “target_my_dir”) for this new profile.

Since the profile “TargetMyDir” is enabled, the value for move_files_to is retrieved

from this profile. The “user settings” still has the old move_files_to value.

200

MusicBrainz Picard, Release v2.12

Now the user wants to work on another set of music files, wanting to disable

windows_compatibility for this set and save them to the “not_for_windows” direc-

tory.

They create a new profile (named “ByeByeWin”), add options move_files_to and

windows_compatibility, and enable it. Now the stack looks like:

[x] ByeByeWin move_files_to windows_compatibility

[x] TargetMyDir move_files_to

[x] user settings move_files_to windows_compatibility [plus all␣

→˓other settings]

They change the values of move_files_to (to “not_for_windows”) and

windows_compatibility (to false) for this new profile. Now when they process

their files, the files are saved to the “ByeByeWin” move_files_to directory, with

windows_compatibility = false.

Now the user wants to save files to the “TargetMyDir” target directory again, with their

usual options. To do this they simply disable the “ByeByeWin” profile (which can later

be re-enabled if needed). The stack looks like:

[] ByeByeWin move_files_to windows_compatibility

[x] TargetMyDir move_files_to

[x] user settings move_files_to windows_compatibility [plus all␣

→˓other settings]

Finally, to return to their usual output directory the user only has to disable the “Tar-

getMyDir” profile so the stack is:

[] ByeByeWin move_files_to windows_compatibility

[] TargetMyDir move_files_to

[x] user settings move_files_to windows_compatibility [plus all␣

→˓other settings]

13.3 Managing Option Profiles

All option profile management is done within the Option Profiles page available from

the “Options → Options…” item on the menu bar. From this screen you will be able to

add, copy, edit, remove, enable and disable profiles, as well as setting the order of the

profile stack.

Initially, the list of profiles will be empty. To create a new profile click on the New

button. This will create a profile with no options selected for the profile to manage.

To rename the profile, right-click on the profile name and select the “Rename profile”

command. The list of options that the profile is to manage are selected from the list

in the right-hand pane. Options can be selected either by group or individually. The

groups can be expanded to see the individual options belonging to that group.

13.3. Managing Option Profiles 201

MusicBrainz Picard, Release v2.12

You can see the value currently assigned to a profile’s option setting by hovering your

cursor over the setting in the list. The value will be displayed as a tooltip for the setting.

202 Chapter 13. Option Profiles

MusicBrainz Picard, Release v2.12

The profile stack order can be rearranged either by selecting a profile and using the

up and down arrow buttons below the list, or by dragging the profile to a new position

in the stack. Profiles are enabled when the box beside the profile’s name is checked.

Changes made to a profile’s options settings, enabled status, or position in the profile

stack will be reflected in the option settings displayed on the other pages. Options that

are controlled by an enabled profile will be shown as highlighted. Hovering your cursor

over the highlighted option will identify which profile currently controls the setting.

Settings are always displayed based on the first enabled profile in the profile stack,

which corresponds to the setting that will be used during processing.

You can also quickly enable or disable a profile (but not change the order of the profile

stack), using the “Options → Enable/disable profiles” item in the menu bar on Picard’s

main screen.

When you click the Make It So! button, in addition to saving your updated profile

configuration all highlighted options will be saved to the first enabled profile in the

profile stack that controls that option. All other options will be saved to the “user

settings” as before. This is described in more detail in the following section.

13.3. Managing Option Profiles 203

MusicBrainz Picard, Release v2.12

13.4 Saving Profile Option Settings

To save a value to a profile option setting, simply ensure that the the target profile

is the first enabled profile in the profile stack, make the desired changes (the options

should be highlighted), and then click the Make It So! button.

Remember, all highlighted options will be saved to the first enabled profile in the profile

stack that controls that option. All other options will be saved to the “user settings”

profile which is the user’s normal settings, and includes all options. You can confirm

which profile a highlighted option will update by hovering your cursor over the option.

204 Chapter 13. Option Profiles

MusicBrainz Picard, Release v2.12

From the pages which contain options that can be included on a profile, you will also

be able to see which profiles, if any, manage any of the options on the page. This is

done by clicking the Attached Profiles button.

This lists the attached profiles in the order in which they appear in the profile stack,

and whether or not the profile is enabled. If the page does not contain any options

that could be managed by a profile, the Attached Profiles button will be disabled.

13.4. Saving Profile Option Settings 205

MusicBrainz Picard, Release v2.12

Warning: It is important to understand that when you click the Make It So! button

all of the option settings on all pages will be saved. If an option is managed by

one or more profiles that are currently enabled, the option will be highlighted and

it will be saved to the first enabled profile in the profile stack that manages the

option. If there are no enabled profiles that manage the option, the option will not

be highlighted and it will be saved to the “user settings” profile which is the user’s

normal settings, contains all options, is at the bottom of the profile stack, and is

always enabled. The “user settings” profile cannot be modified is not shown in the

profile management page.

206 Chapter 13. Option Profiles

CHAPTER

FOURTEEN

COMMAND AND BATCH PROCESSING

As of version 2.9, Picard will try to only run a single instance of the program at a

time. When the program is started, it checks to see if there is another instance of

that version, configuration file and plugin startup status -P already running. If the

same version is already running, any files or directories specified on the command

line of the new instance, along with any executable commands specified with the -e

or -exec options will be passed to the already running instance for processing and the

new duplicate instance will be shut down. This allows batch processing of files to be

initiated automatically from other processes. If there is no instance of that version

already running, Picard will start normally.

For example if there is an instance of Picard running and a second instance is started

with the command line:

picard -e load mbid://release/dbd0ce67-cae6-33eb-8f5a-1143a30c2353

the load command will be passed to the running instance to load the specified release,

and the second instance will be closed.

This allows the user to set up dynamic batch processing of commands to automate

the tagging process, especially when used with the FROM_FILE command to load a

standard processing command sequence such as:

CLUSTER

LOOKUP_CLUSTERED

SAVE_MATCHED

REMOVE_SAVED

REMOVE_EMPTY

or:

LOOKUP_CD path/to/ripper.log

SAVE_MATCHED

FINGERPRINT

SUBMIT_FINGERPRINTS

REMOVE_SAVED

REMOVE_EMPTY

207

MusicBrainz Picard, Release v2.12

or even something like:

Load a directory of files to process

LOAD path/to/directory/of/unprocessed/files

Try clustering and lookup the clusters first

CLUSTER

LOOKUP_CLUSTERED

Save matched clusters

SAVE_MATCHED

Calculate and submit fingerprints for the matched files

FINGERPRINT

SUBMIT_FINGERPRINTS

Clean up and remove the saved files

REMOVE_SAVED

REMOVE_EMPTY

Try scanning the remaining files to find matches

SCAN

Save matched files from the scans

SAVE_MATCHED

Clean up and remove the saved files

REMOVE_SAVED

REMOVE_EMPTY

Any files remaining in the cluster pane could not be

matched automatically

Please see the Executable Commands section for details regarding the commands

available for execution.

208 Chapter 14. Command and Batch Processing

MusicBrainz Picard, Release v2.12

14.1 Executable Commands

Picard can accept commands for processing by specifying them on the command line

using the -e option or loading them from a text file. Commands are case-insensitive,

and are processed sequentially in the order that they are received. The executable

commands that Picard recognizes are:

14.1.1 CLEAR_LOGS

Usage: CLEAR_LOGS

Implemented: Picard 2.9

Clear all entries from Picard’s log. This is the equivalent of clicking the Clear Log

button from the log viewing screen opened using the “Help → View Error/Debug Log”

command.

14.1.2 CLUSTER

Usage: CLUSTER

Implemented: Picard 2.9

Cluster all files in the cluster pane. This is the equivalent of using the “Tools→ Cluster”

command.

14.1.3 FINGERPRINT

Usage: FINGERPRINT

Implemented: Picard 2.9

Calculate acoustic fingerprints for all (matched) files in the album pane. This is the

equivalent of using the “Tools → Generate AcoustID Fingerprints” command.

14.1.4 FROM_FILE

Usage: FROM_FILE <file path>

Implemented: Picard 2.9

Load commands from a file. The file path can be either an absolute or relative path to

a text file containing the commands to be executed. Each command to be processed

must be on a separate line along with its arguments (if applicable). Blank lines and

14.1. Executable Commands 209

MusicBrainz Picard, Release v2.12

lines beginning with an octothorpe (#) are ignored. Command files can include other

command files by specifying them with another FROM_FILE command. Circular refer-

ences (by including a command file that is currently being processed) are ignored and

will be logged as a warning.

For example, you may have a file named commands.txt containing the standard com-

mands that you want to use when processing each directory, such as:

Try clustering and lookup the clusters first

CLUSTER

LOOKUP_CLUSTERED

Save matched clusters

SAVE_MATCHED

Calculate and submit fingerprints for the matched files

FINGERPRINT

SUBMIT_FINGERPRINTS

Clean up and remove the saved files

REMOVE_SAVED

REMOVE_EMPTY

Try scanning the remaining files to find matches

SCAN

Save matched files from the scans

SAVE_MATCHED

Clean up and remove the saved files

REMOVE_SAVED

REMOVE_EMPTY

Any files remaining in the cluster pane could not be

matched automatically

You could then process a directory by starting Picard with the command:

picard -e LOAD path/to/directory/of/unprocessed/files -e FROM_FILE␣

→˓commands.txt

210 Chapter 14. Command and Batch Processing

MusicBrainz Picard, Release v2.12

14.1.5 LOAD

Usage: LOAD <supported MBID/URL or path to a file/directory>

Implemented: Picard 2.9

Load one or more files/directories/MBIDs/URLs to Picard. This is similar to including the

file, directory path, URL or MBID on the command line.

Files and directories are specified including the path (either absolute or relative) to

the file or directory, and may include drive specifiers. They can also be specified

using the file:// prefix. URLs are specified by using either the http:// or https:/

/ prefix. MBIDs are specified in the format mbid://<entity_type>/<mbid> where

<entity_type> is one of “release”, “artist” or “track” and <mbid> is the MusicBrainz

Identifier of the entity.

If a specified item contains a space, it must be enclosed in quotes such as "/home/

user/music/my song.mp3".

14.1.6 LOOKUP

Usage: LOOKUP [clustered|unclustered|all]

Implemented: Picard 2.9

Lookup files in the clustering pane. Options are clustered files, unclustered files or all

files. If not specified, the command defaults to all files.

This is the equivalent of using the “Tools → Lookup” command.

14.1.7 LOOKUP_CD

Usage: LOOKUP_CD [device/log file]

Implemented: Picard 2.9

Read CD from the selected drive or ripper log file, and looks it up on MusicBrainz. If no

argument is specified, it defaults to the first (alphabetically) available disc drive.

This is the equivalent of using the “Tools → Lookup CD…” command.

14.1. Executable Commands 211

MusicBrainz Picard, Release v2.12

14.1.8 PAUSE

Usage: PAUSE <number of seconds to pause>

Implemented: Picard 2.9

Pause executable command processing for the specified number of seconds.

14.1.9 QUIT

Usage: QUIT [force]

Implemented: Picard 2.9

The QUIT command waits until all queued executable commands have completed, and

then initiates a shutdown request the same as if the user closed Picard from the user

interface. This allows Picard to perform the same checks for unsaved files and such.

When ‘force’ is entered as an argument to the command, Picard will bypass the un-

saved files check.

Once a QUIT command has been queued, Picard will not queue any further executable

commands. If the user cancels the QUIT from the unsaved files check dialog, the

system will allow more commands to be queued.

14.1.10 REMOVE

Usage: REMOVE <path to one or more files>

Implemented: Picard 2.9

Removes the specified file(s) from Picard. Does nothing if no arguments provided.

14.1.11 REMOVE_ALL

Usage: REMOVE_ALL

Implemented: Picard 2.9

Removes all files from Picard.

212 Chapter 14. Command and Batch Processing

MusicBrainz Picard, Release v2.12

14.1.12 REMOVE_EMPTY

Usage: REMOVE_EMPTY

Implemented: Picard 2.9

Removes all empty clusters and albums.

14.1.13 REMOVE_SAVED

Usage: REMOVE_SAVED

Implemented: Picard 2.9

Removes all saved files from the album pane.

14.1.14 REMOVE_UNCLUSTERED

Usage: REMOVE_UNCLUSTERED

Implemented: Picard 2.9

Removes all unclustered files from the cluster pane.

14.1.15 SAVE_MATCHED

Usage: SAVE_MATCHED

Implemented: Picard 2.9

Saves all matched files from the album pane.

14.1.16 SAVE_MODIFIED

Usage: SAVE_MATCHED

Implemented: Picard 2.9

Saves all modified files from the album pane.

14.1. Executable Commands 213

MusicBrainz Picard, Release v2.12

14.1.17 SCAN

Usage: SCAN

Implemented: Picard 2.9

Scans all files in the cluster pane. This is the equivalent of using the “Tools → Scan”

command.

14.1.18 SHOW

Usage: SHOW

Implemented: Picard 2.9

Make the running instance of Picard the currently active window.

14.1.19 SUBMIT_FINGERPRINTS

Usage: SUBMIT_FINGERPRINTS

Implemented: Picard 2.9

Submits outstanding acoustic fingerprints for all (matched) files in the album pane.

This is the equivalent of using the “Tools → Submit AcoustIDs” command.

14.1.20 WRITE_LOGS

Usage: WRITE_LOGS <path to output file>

Implemented: Picard 2.9

Writes the Picard logs to the specified output file. This is the equivalent of using the

Save As… button from the log viewing screen opened using the “Help→ View Error/De-

bug Log” command.

214 Chapter 14. Command and Batch Processing

CHAPTER

FIFTEEN

EXTENDING PICARD

There are two primary ways that the functionality of MusicBrainz Picard can be ex-

tended: plugins and scripts.

Plugins can be installed / uninstalled and enabled / disabled from the Options menu.

Installed plugins are loaded during the startup of Picard, and are made available to the

program.

Scripts are stored within the user settings, and are managed from the “Options →
Options…” menu.

15.1 Plugins

Plugins are written in Python, and are registered to the appropriate hooks. Each plugin

has its own version identifier, but also lists the plugin API versions that it supports.

When loading a plugin, Picard first compares its list of API versions to the plugin’s

supported versions to ensure that the plugin will operate correctly. The Picard API

versions indicate the version of the program in which the plugin API was last updated

and any plugin APIs with which it is backwards compatible.

Hooks are connections to the various objects in Picard that call a specific type of plugin.

During the normal running of Picard, when it encounters a hook it will first retrieve a

list of all plugins registered for that specific hook, and then execute them sequentially

in order based upon the priority specified when the plugin was registered to the hook.

There are a few different types of plugins, including:

Metadata processors: These plugins can access and mod-

ify the metadata when it is loaded from MusicBrainz. They

are registered with register_album_metadata_processor() or

register_track_metadata_processor(). These are what you might call “auto-

matic” because they operate without any user intervention. An example is the

Classical Extras plugin.

Cover art providers: These plugins provide another cover art source, and are regis-

tered with register_cover_art_provider(). They are also “automatic” in that they

load album art without user intervention, although they must be enabled by the user

in the Cover Art options. The Fanart.tv plugin is an example.

215

MusicBrainz Picard, Release v2.12

Scripting function: Some plugins just provide additional scripting functions for

use in “Options → Scripting” or the renaming script. These are registered with

register_script_function(). Keep tag, which provides the $keep() function, is

an example.

Context menu actions: Plugins can register actions that can be activated man-

ually via the context menu. This is what the Load as non-album track plu-

gin does. Another example is Generate Cuesheet. These are registered with

register_album_action(), register_track_action(), register_file_action(),

register_cluster_action() or register_clusterlist_action().

File formats: Plugins can also provide support for new file formats not yet supported

by Picard. These are registered with register_format().

Event processors: Plugins can execute automatically based on certain

event triggers. These are registered with file_post_load_processor(),

file_post_save_processor(), file_post_addition_to_track_processor(),

file_post_removal_from_track_processor() or album_post_removal_processor().

Note that plugins are not limited to one of those areas. A single plugin could implement

all of the above, but most existing plugins focus on one.

The Plugins API provides information regarding the different plugin hooks available,

along with some examples of their use. There is also a list of the available plugins

that have been submitted to the MusicBrainz Picard repository shown on the Picard

website.

15.2 Scripts

There are two types of scripts used in Picard: the file naming script and tagging scripts.

These are managed from the “File Naming” and “Scripting” sections of the “Options→
Options…” menu. All scripts are written using the Picard scripting language. Scripts

are often discussed in the MetaBrainz Community Forum, and there is a thread specific

to file naming and script snippets.

15.2.1 File Naming Script

Multiple file naming scripts can be defined in a user’s settings, although only one is

selected at a time for use. File naming scripts can vary from a simple one-line script

such as %album%/%title% to a very complex script using different file naming formats

based on different criteria. In all cases, the files will be saved using the text output by

the script.

File naming scripts are managed using the File Naming Script Editor which can be

opened from the “File Naming” section of the “Options → Options…” menu, or directly

from the “Options → Open file naming script editor…” menu item. The current file

naming script can also be selected directly from the “Options → Select file naming

script” menu.

216 Chapter 15. Extending Picard

https://picard.musicbrainz.org/plugins/
https://community.metabrainz.org/c/picard
https://community.metabrainz.org/t/repository-for-neat-file-name-string-patterns-and-tagger-script-snippets/2786/

MusicBrainz Picard, Release v2.12

Note: Any new tags set or tags modified by the file naming script will not be written

to the output files’ metadata.

15.2.2 Tagging Scripts

There can bemultiple tagging scripts defined in a user’s settings. Individual scripts can

be enabled or disabled, and the order of execution of the scripts can be set. Whenever

a script is run automatically (i.e.: when an album is loaded), it is processed once for

each track in the album that triggered the run. For example, if there are two tagging

scripts enabled (A and B) and an album with three tracks is loaded, the scripts will be

processed in the following order:

1. Script A Track 1;

2. Script A Track 2;

3. Script A Track 3;

4. Script B Track 1;

5. Script B Track 2;

6. Script B Track 3.

Metadata updates are not shared between tracks, so you cannot append data from

one track to a tag in another track.

Any new tags set or tags modified by the tagging scripts will be written to the output

files’ metadata, unless the tag name begins with an underscore. These “hidden” tags

are typically used as variables to hold temporary values that are used later in either

the tagging or file naming scripts. Tagging scripts are run once for each track in the

data, using the metadata for that track.

Tagging scripts can also be run manually by right-clicking either an album or a track

in the right-hand pane in Picard. If run from the album entry, the script is run for each

track in the album. If run from an individual track, the script is only run for that track.

15.2.3 Tagging Script Examples

The following scripting examples show how tagger scripts can be used to solve some

specific use cases. Please refer to Picard scripting language for a detailed description

of the variables and functions used in these examples.

15.2. Scripts 217

MusicBrainz Picard, Release v2.12

Move disambiguation to album title

Append the disambiguation comment of a release to the album title:

$set(album,%album%$if(%_releasecomment%, \(%_releasecomment%\)))

Release language as language

The %_releaselanguage% variable specifies the language of the track listing, whereas

the %language% variable is supposed to be the lyrics language. The following script

will use the %_releaselanguage% instead if %language% is empty:

$if($not(%language%),$set(language,%_releaselanguage%))

Use original release date

By default Picard provides a tag date which holds the release date of a specific release

and originaldate which provides the earliest release date of this release. For exam-

ple you might have a 2020 reissue of an album that originally was released in 1992.

In this case date will be set to “2020” and originaldate to “1992”. If you prefer to

have always the original release date as the primary date in your file’s tags you could

use the following script:

$set(date,$if2(%originaldate%,%date%))

The use of $if2 ensures that if originaldate is empty it will fall back to date.

In addition Picard provides a variable %_recording_firstreleasedate%, which tries

to provide the first release date per recording (which can be different for each track in

a release). If you prefer this you can use the following script:

$set(date,$if2(%_recording_firstreleasedate%,%originaldate%,%date%))

Or if you want to keep the date for the actual release date of the specific release, but

use the recording’s first release date as originaldate:

$set(originaldate,$if2(%_recording_firstreleasedate%,%originaldate%))

218 Chapter 15. Extending Picard

MusicBrainz Picard, Release v2.12

Set album sort name

The albumsort tag is not filled by Picard by default. You can set it to a meaningful

value with prefixes “The” and “A” moved to the end with the following script:

$set(albumsort,$swapprefix(%album%))

This will e.g. set the sort name for the release “The Best of Muddy Waters” to “Best of

Muddy Waters, The”.

Set compilation for multi artist releases

By default the compilation tag will be set to 1 only for Various Artists releases. The

following script will set it for all releases with more than one artist (as it was default

behavior in Picard 1.2 and earlier):

$if(%_multiartist%,$set(compilation,1))

Remove featuring from album artist

This always removes featuring artists from the album artist:

$set(albumartist,$rreplace(%albumartist%,\\s+feat\\..*,))

Move featuring from artist to title

According to MusicBrainz guidelines featuring artists are part of the artist name, e.g.

“Artist A feat. Artist B”. Some users prefer to have featuring added to the album or

track title instead. The following script moves featured track artists to the track title:

$set(_feat_title,$rsearch(%artist%,\\s+\\\(?\(f\(ea\)?t\\.[^\)]*\)))

$set(artist,$rreplace(%artist%,\\s+\\\(?f\(ea\)?t\\.[^\)]*\\\)?,))

$set(title,$if(%_feat_title%,%title% \(%_feat_title%\),%title%))

The same can be done for moving featured artists from the album artist to the album

title:

$set(_feat_album,$rsearch(%albumartist%,\\s+\\\(?\(f\(ea\)?t\\.[^\)]*\

→˓)))

$set(albumartist,$rreplace(%albumartist%,\\s+\\\(?f\(ea\)?t\\.[^\)]*\\\

→˓)?,))

$set(album,$if(%_feat_album%,%album% \(%_feat_album%\),%album%))

15.2. Scripts 219

MusicBrainz Picard, Release v2.12

Preserve original filename

The originalfilename tag is supposed to hold the filename the file originally had. By

default Picard does not set or modify this tag. If you want to save this information the

following Script can be used:

$set(originalfilename,$if2(%originalfilename%,%_filename%.%_extension

→˓%))

This will keep any existing originalfilename tag. But if this tag is not yet present the

tag will be set to the current filename. As this happens before the file is being saved

the original name of the file before Picard modifies it can be preserved.

15.3 Processing Order

In order to make effective use of plugins and scripts, it is important to understand

when each is processed in relation to the others. As a general statement, plugins are

always processed before scripts. Plugins of the same type will be executed in order

based upon the priority specified when the plugin was registered.

15.3.1 Startup

During program startup, plugins with the following hooks are processed, and any ad-

ditional functionality that they provide will be available immediately:

• File Formats

• Cover Art Providers

• Tagger Script Functions

• Context Menu Actions

• Option Pages

15.3.2 Loading a Release

When data gets loaded from MusicBrainz (while the album shows the “loading” status

in the right-hand pane), the following are processed:

• Metadata Processor Plugins

• Tagging Scripts

Plugins have access to the raw data loaded from MusicBrainz and are processed before

scripts, in the order of priority set when the plugin was registered.

Scripts are processed in the order set in the Options menu.

220 Chapter 15. Extending Picard

MusicBrainz Picard, Release v2.12

Note: Tagging scripts are always run against metadata loaded from MusicBrainz,

and exactly after the data gets loaded and before files get matched. They are one of

the last steps in the loading process. Tagging scripts do not have access to metadata

stored in existing files.

15.3.3 Loading Music Files

After a file has been loaded into Picard, plugins registered with

file_post_load_processor() are executed. This could, for example, be used

to load additional data for a file.

15.3.4 Adding / Removing Files

After a file has been added to a track (on the right-hand pane of Picard), plugins reg-

istered with file_post_addition_to_track_processor() are executed.

After a file has been removed from a track (on the right-hand pane of Picard), plugins

registered with file_post_removal_from_track_processor() are executed.

15.3.5 Saving Files

When files are saved, for each file the File Naming Script is first executed to determine

the destination path and file name. Note that this script has no effect on the tag values

written to the output file.

After a file has been saved, plugins registered with file_post_save_processor() are

executed. This can, for example, be used to run additional post-processing on the file

or write extra data. Note that the file’s metadata is already the newly saved metadata.

15.3.6 Removing Albums

After an album has been removed from Picard, plugins registered with

album_post_removal_processor() are executed.

15.3.7 Context Menus

Individual tagging scripts can be executed on-demand from the context menu dis-

played when right-clicking on a file, album, track, cluster or cluster list.

15.3. Processing Order 221

CHAPTER

SIXTEEN

TROUBLESHOOTING

Sometimes things don’t go as planned, and you need to find out what has gone wrong

in order to correct the problem. This section provides information on how to get started

troubleshooting problems encountered while using MusicBrainz Picard.

16.1 General Troubleshooting

16.1.1 Getting Help

If you have problems using Picard, please first check the following resources:

• For general usage information see the Using Picard documentation and the illus-

trated quick start guide.

• Read the FAQ section for common questions and problems.

• Consult the community forums.

• Check the download page for a newer version of Picard which might solve your

problem.

• If the problem is to do with a plugin, check the Picard Plugins for updated plugin

versions.

16.1.2 Reporting a Bug

If you think you have found a bug please check whether you are using the latest version

of Picard and whether the bug has already been reported in the bug tracker. If you’re

not sure or don’t want to look through the existing tickets, ask on the community

forums first.

If you’re still convinced you have found a new bug, open a new ticket providing the

following information:

• Which version of Picard do you use? (“Affects Version” in the form)

• Which operating system do you use? (“Environment” in the form)

• What did you do when the bug occurred?

222

https://picard.musicbrainz.org/quick-start/
https://picard.musicbrainz.org/quick-start/
https://community.metabrainz.org/c/picard
https://picard.musicbrainz.org/downloads/
https://picard.musicbrainz.org/plugins/
https://tickets.musicbrainz.org/browse/PICARD
https://tickets.musicbrainz.org/secure/CreateIssue.jspa?pid=10042&issuetype=1

MusicBrainz Picard, Release v2.12

• What actually happened, and what did you expect to happen?

• If you’re using plugins, which plugins do you have enabled?

• The “Debug” level log from the Picard session demonstrating the problem.

Warning: Please remember to first remove any personal and confidential infor-

mation like user id, passwords or authorization tokens before posting or submitting

any log output.

16.1.3 Getting a Debug Log

For many bugs, it helps developers to have a debug log from Picard. You can see the

log by going to “Help → View Log”. You can also get a full debug log, which is better

because it contains more detailed information. Pasting this log into your forum post or

bug ticket can help developers and other users to resolve your issue more quickly. To

retrieve the full debug log:

1. Start Picard.

2. Open the log view with “Help → View Log”.

3. Change the log level verbosity to Debug.

4. Close the log viewer.

5. Close and restart Picard.

6. Repeat the action that caused the problem being reported.

7. Open the log viewer and copy the output to paste into the forum post or bug

ticket. Alternately, you can save the log to a file to attach to your bug report by

using the Save As… button.

8. Close the log viewer, and close Picard.

16.1.4 Getting Logs in Case of Crashes

In some cases the problem will cause Picard to crash and not allow you to access the

resulting log from the log viewer. You can still generate a log output to attach to your

report by starting Picard with the --debug command line option from a command /

terminal window and copying the log output information from the terminal. The steps

to follow for each of the supported platforms are:

16.1. General Troubleshooting 223

MusicBrainz Picard, Release v2.12

Windows Systems

First open a command window by clicking the search icon on the Windows Taskbar and

enter “cmd”. Then start Picard by entering the following in the command window:

"C:\Program Files\MusicBrainz Picard\picard.exe" --debug

This will display all log entries in the command window, and allow you to copy the

information to the clipboard to paste into your report.

Note: This method will only work with the installed version of Picard. It will not work

with the portable or Windows Store versions.

macOS Systems

First open a terminal window by doing one of the following:

• Click the Launchpad icon in the Dock, type “Terminal” in the search field, then

click Terminal.

• In the Finder, open the “/Applications/Utilities” folder, then double-click “Termi-

nal”.

Assuming Picard was put into the system wide Applications folder when installed, it

can then be started by entering the following in the terminal window:

"/Applications/MusicBrainz Picard.app/Contents/MacOS/picard-run" --

→˓debug

This will display all log entries in the terminal window, and allow you to copy the infor-

mation to the clipboard to paste into your report.

Linux Systems

First open a Terminal window in your desktop environment, either from the Applications

menu or by pressing Ctrl+Alt+T on most systems. Then start Picard by entering the

following in the terminal window:

picard --debug

This will display all log entries in the terminal window, and allow you to copy the infor-

mation to the clipboard to paste into your report.

224 Chapter 16. Troubleshooting

MusicBrainz Picard, Release v2.12

16.2 Picard won’t start

If you find that Picard won’t start there are a few common possible reasons, and things

to try to correct the issue. Before doing anything drastic, it is recommended that you

try to start Picard from the command line with the -d option to generate the debug log-

ging. This process is described in the General Troubleshooting section. If the resulting

logs don’t provide any clues as to the problem, it may be one of the following:

The program files have become corrupted

If you suspect that this may be the problem, the first (and simplest) thing

to try is to reinstall the program. This should address any potential file cor-

ruption issues. If Picard still won’t start then it is unlikely that this was the

problem.

A plugin file has become corrupted or is incompatible

To check whether one of the plugin files has become corrupted or, in the case

of a recent upgrade to a plugin or Picard, a plugin is not compatible, you

should try removing all of the plugins and then start Picard. Since you won’t

be able to disable or remove the plugins using Picard’s ‘Option’ settings, you

will need to remove themmanually. The plugins may be located in a plugins

subdirectory of the directory where the Picard program file is stored, or in a

user-specific directory:

• Windows: C:\Users\user\AppData\Local\MusicBrainz\Picard\

plugins

• macOS: ~/Library/Preferences/MusicBrainz/Picard/plugins

• Linux: ~/.config/MusicBrainz/Picard/plugins

Once you have located the plugin files, they should be removed from the

plugins directory and moved to a temporary directory. Then try to start

Picard. If the program starts, you should try restoring the plugin files from

your temporary directory one at a time, and check if Picard will start. This

will help identify the plugin that was causing the problem.

The option settings file has become corrupted or is incompatible

To check whether Picard’s option settings file has become corrupted or, in

the case of a recent upgrade to Picard, it is not compatible, you should try

removing the settings file and then start Picard. If Picard is started without

finding its configuration settings file, it will create a new one using the de-

fault settings. The settings file is called Picard.ini and can be found in a

user-specific directory:

• Windows: C:\Users\user\AppData\Roaming\MusicBrainz

• macOS: ~/Library/Preferences/MusicBrainz

• Linux: ~/.config/MusicBrainz

16.2. Picard won’t start 225

MusicBrainz Picard, Release v2.12

Again, it is recommended that you move the file to a temporary directory so

that it can be recovered if this turns out not to be the cause of the problem.

There really is a bug in Picard

If this problem started just after updating Picard, in spite of all the testing

that is performed prior to releasing a new version, it may be possible that

this is indeed a bug. In that case, you should first try to reinstall the previous

version to ensure that it works and that the problem is only occurring with

the new version. Then you should report the issue, following the steps out-

lined in the “Reporting a Bug” topic of the General Troubleshooting section.

Please be sure to include as much information as possible, which will help

the developers to locate and fix the problem.

16.3 There is no coverart

There are two different problems that often fall under this topic:

16.3.1 Picard isn’t finding and downloading any cover art

No cover art providers have been enabled in the configuration settings

Confirm that the “Options → Options… → Cover Art” settings have at least

one cover art provider enabled. Please see the Cover Art Providers section

for more information.

There is no cover art available from the selected providers

It’s possible that the selected release does not have any cover art available

from the enabled cover art providers. If a cover art image is displayed for

the release on the MusicBrainz website, it is possible that the image for the

release group is being displayed, or it is being provided through a third-party

provider agreement. Sometimes this can be addressed by enabling the “CAA

Release Group” and “Allowed cover art URLs” provider options.

The selected provider is not currently available

On occasion, the server providing the cover art (e.g.: archive.org) is not

available, or mirror servers have not yet been synchronized with the latest

updates. In this case, you may have to wait for a few minutes before retry-

ing your request. Reviewing the details in Picard’s log often provides some

insight into whether or not this is the issue.

The cover art is still a pending edit

If the cover art was recently added, the edit adding the image may not have

been accepted and applied yet. You can have Picard use the cover art from

pending edits by disabling the “Download only approved images” option in

the Cover Art Archives subsection of the “Options → Options… → Cover Art”

settings. Please see the Cover Art Archive section for more information.

226 Chapter 16. Troubleshooting

MusicBrainz Picard, Release v2.12

16.3.2 Coverart that is saved with the files isn’t displayed

Player doesn’t support embedded cover art

Check to confirm that your player supports embedded cover art images.

That support is not universal among all players. Some players support em-

bedded images, some support images stored as files in the directory (e.g.:

cover.jpg or folder.jpg), and some support both. Picard allows you to

specify how the cover art images should be saved. Please see the Location

section of the Coverart options for details.

You should also confirm that your player supports the version of the tags

being written.

See also:

For more information please see: AAC Files / AC3 Files / ID3 Files /WAVE Files

Embedded cover image too large

Even if your cover art image has been properly embedded in the file, it’s

possible that your player has trouble dealing with embedded images over a

certain size. If all else fails, you might try using an image with a smaller file

size.

16.4 Tags are not updated or saved

There are typically four reasons that tags may not be written or updated when files are

saved:

Saving tags has not been enabled in the configuration settings

Confirm that the “Options → Save tags” setting has been enabled. See Ac-

tion Options for more information.

Tags are being set in the file naming script

Tags created or updated in the file naming script will not be written to the

output files. This script is only used for developing the file name and direc-

tory structure for the output. If you want to set or update a tag value in a

script, it must be in a tagging script. Please see the Scripts section for more

information about the different types of scripts.

The tags begin with an underscore

Tags whose names begin with an underscore, regardless of how they are cre-

ated, will not be written to the output files. These are considered variables

for use within Picard rather than tags. Please see the Tags & Variables section

for more information regarding the difference between tags and variables.

The file type does not support writing tags

16.4. Tags are not updated or saved 227

MusicBrainz Picard, Release v2.12

Confirm that the file type that you are writing actually supports the tags that

are to be written. Not all file types support all the tags Picard supports.

Please see the Appendix B: Tag Mapping section for details about the tags

supported by various file formats.

16.5 Files are not being saved

There are two typical scenarios where files are not being saved:

After selecting files in the right-hand pane you see a red stop like icon

This indicates an error occurred during saving. In the majority of times peo-

ple see this it is because the files they want to save are write protected (ei-

ther have the readonly flag set or have wrong permissions). Check that the

files are not write protected and that you have the appropriate permissions

before trying again.

Permission problems seem to be more common when Picard has been in-

stalled using Flatpak, or when the files are being read from or written to a

samba share on the network.

Another possibility is that the total length of the destination path and file

name exceeds the maximum length allowed by the operating system. If you

have an extremely long path and file name, try shortening it to see it it allows

the file to be saved.

In the right-hand pane you see just a musical note icon in front of the tracks

That means that this is just the track data from MusicBrainz, but no file has

been associated with it. In that case the save button is disabled. Check to

make sure that the files are properly matched to the tracks before trying

to save again. Please see the Matching Files to Tracks and Saving Updated

Files sections for more information.

A third possibility, although very rare, is that you are trying to set a tag with an invalid

key. If the two solutions above don’t resolve your problem, try reviewing all of the tags

to be written to see if there are any that don’t appear to be valid.

16.6 Picard just stopped working

There are typically two reasons that Picard will run very slowly or appear to be stalled:

Processing a large number of files at one time

When processing a large number of files in one batch, Picard can run into

issues either due to processing each file (e.g.: AcoustID fingerprinting) or

during lookups following clustering or fingerprinting because of all of the

information requests to the MusicBrainz server API, as well as download-

ing cover art. Even though Picard may still be working its way through the

228 Chapter 16. Troubleshooting

MusicBrainz Picard, Release v2.12

backlog, the user interface may become non-responsive and appear that the

program has stalled or frozen.

The impact of processing files in large batches is exacerbated when using

plugins that make additional information request calls to the MusicBrains

server API.

If you are processing a large library of files, it is generally more effective

to process smaller batches (e.g.: 200 files) at a time, first retrieving the

information using a cluster and lookup process, and then processing any

remaining unmatched files using the scan process. Please see the Retrieving

Album Information section for more information.

Processing files across a network connection

If you are processing files across a network connection, this can impact the

speed at which Picard works because of the speed difference between a

network connection and a local drive. In this case, the throughput can be

improved by first copying the source files to a local drive, process with Picard,

and then move the resulting files to the network drive.

16.7 macOS shows the app is damaged

On macOS 10.12 and 10.13 there have been reports that sometimes the MusicBrainz

Picard app cannot be started and macOS shows an error message:

“MusicBrainz Picard.app” is damaged and can’t be opened. You should move

it to the Trash.

This mostly seems to happen after moving the file to the Applications folder and seems

to be caused by Gatekeeper mistakenly marking the app as damaged. To solve the

issue open a terminal and run:

xattr -c "/Applications/MusicBrainz Picard.app"

This will clear the app being marked as damaged. If you have placed the app in a

different location then /Applications adjust the path in the command above accord-

ingly.

16.7. macOS shows the app is damaged 229

CHAPTER

SEVENTEEN

FREQUENTLY ASKED QUESTIONS

Some of themost often asked questions have been addressed in the following sections.

These have been organized into groups based on the operation being performed.

17.1 Using Picard

17.1.1 How do I tag files with Picard?

There is a separate section that explains the tagging process. Please see Using Picard

for details.

17.1.2 The green “Tagger” icon disappeared from MusicBrainz.org,
how do I get it back?

This icon shows up when a manual lookup is performed via Picard using “Tools →
Lookup”.

Alternatively the parameter ?tport=8000 can be added to the end of almost any Music-

Brainz URL and the green tagger icons will continue to show up from then on.

17.1.3 I’m trying to load a release in Picard, but all I’m seeing is
“Couldn’t load album errors”. What’s up?

If you get “Couldn’t load album errors” for releases in Picard, this can occur for a

number of reasons. Check the following:

1. Is the problem persistent for a given release?

Try waiting a minute or two, or even a bit longer and then try again with a

right-click, “Refresh”. Sometimes the servers are just overloaded and

temporarily reject requests.

2. Has the release been deleted from MusicBrainz?

230

MusicBrainz Picard, Release v2.12

If you are re-tagging files previously tagged with Picard, and get this error, the

release has possibly been deleted. Try to right-click and use the “Lookup in

browser” option to view the release on the website. If you can’t find it, it may

have been deleted. This could be because you tagged a pending release that

was voted down, or tagged against a release that was deleted because editors

decided it wasn’t a valid release. This can happen for homebrew compilations,

bad torrent or pirate rips, “advance” releases or very poorly added releases.

Usually there will be an alternate release you can tag against, which you can

find by searching or doing another clustered lookup from Picard. If you can’t find

a replacement and believe it has been deleted unfairly, submit a new release,

supplying evidence of the track listing and as much information as possible to

prove it is genuine and it may be accepted again.

17.1.4 I’m using macOS, where are my network folders or drives?

These should show up in the add file and add folder dialogs, but they aren’t visible by

default in the file browser pane. If you want to see them in the file browser pane, right

click in the pane and select “show hidden files”. They should then be visible in the

/Volumes folder.

17.1.5 macOS shows the app is damaged. How can I run Picard?

On macOS 10.12 and 10.13 there have been reports that sometimes the MusicBrainz

Picard app cannot be started and macOS shows an error message:

“MusicBrainz Picard.app” is damaged and can’t be opened. You should move

it to the Trash.

This mostly seems to happen after moving the file to the Applications folder and seems

to be caused by Gatekeeper mistakenly marking the app as damaged. To solve the

issue open a terminal and run:

xattr -c "/Applications/MusicBrainz Picard.app"

This will clear the app being marked as damaged. If you have placed the app in a

different location than /Applications adjust the path in the command above accord-

ingly.

17.1. Using Picard 231

https://musicbrainz.org/doc/How_to_Add_a_Release

MusicBrainz Picard, Release v2.12

17.1.6 Picard is installed on Linux as a Snap, how can I access remov-
able media?

Picard installed as a Snap is running inside a sandbox and thus it does not have full

access to all files and folders on your system. By default Picard has access to your

home folder. You can additionally give it access to removable media by running the

following command on a terminal:

snap connect picard:removable-media

17.1.7 On Windows, how do I solve errors on saving to cloud storage
drives mounted with rclone?

rclone can provide access to cloud storage by mounting a virtual filesystem as a drive.

This virtual filesystem has some differences to a real filesystem which can cause com-

patibility issues.

For full compatibility with Picard you need to mount the cloud storage with rclone

as a network drive with the --network-mode parameter and set the cache mode

to --vfs-cache-mode=writes or --vfs-cache-mode=full. Your rclone command to

mount a remote as drive X: might look like this:

rclone mount --vfs-cache-mode=writes --network-mode remote:path/to/

→˓files X:

Please refer to the rclone documentation for more details.

17.2 File Formats

17.2.1 What formats does Picard support?

Picard supports the following file formats:

• MPEG-1 Audio (.mp3, .mp2, .m2a)

• MPEG-4 Audio (.m4a, .m4b, .m4p, .m4v, .m4r, .mp4)

• Windows Media Audio (.wma, .wmv, .asf)

• Microsoft WAVE (.wav)

• The True Audio (.tta)

• FLAC (.flac)

• Audio Interchange File Format (.aiff, .aif, .aifc)

• Musepack (.mpc, .mp+)

• WavPack (.wv)

232 Chapter 17. Frequently Asked Questions

MusicBrainz Picard, Release v2.12

• OptimFROG (.ofr, .ofs)

• Monkey’s Audio (.ape)

• Tom’s lossless Audio Kompressor (.tak)

• Speex (.spx)

• Generic Ogg files (.ogg, .ogx)

• Ogg FLAC (.ogg, .oga)

• Ogg Theora (.ogg, .ogv)

• Ogg Opus (.opus)

• Ogg Audio (.oga)

• Ogg Video (.ogv)

• ADTS stream / AAC (.aac)

• AC-3 (.ac3, .eac3)

• Direct Stream Digital (.dff, .dsf)

Note: WAVE files lack a standard for proper tagging. Picard uses ID3v2 tags to tag

WAVE files, but this is not supported by all software. For compatibility with software

which does not support ID3v2 tags in WAVE files additional RIFF INFO tags can be writ-

ten to the files. RIFF INFO has only limited support for tags and character encodings.

17.2.2 What formats will Picard support?

Picard is intended to eventually support all formats (including fingerprinting), but this

is a complex (arguably never-ending) process, and will take some time.

17.2.3 What rippers are supported for looking up from logs?

As of version 2.9, Picard supports the use of log files produced by popular CD file

rippers for looking up a release. Because the log files of these rippers contain sufficient

information to generate the CD table of contents they can be used in place of reading

the CD itself. The supported rippers include:

• dBpoweramp for macOS and Windows

• Exact Audio Copy (EAC) for Windows

• fre:ac for Linux, macOS, Windows and others

• Whipper for Linux

• X Lossless Decoder (XLD) for macOS

17.2. File Formats 233

https://dbpoweramp.com/
http://exactaudiocopy.de/
https://www.freac.org
https://github.com/whipper-team/whipper
https://tmkk.undo.jp/xld/index_e.html

MusicBrainz Picard, Release v2.12

17.2.4 Which tags can Picard write to my files?

See the Tags & Variables section for information on which MusicBrainz fields Picard

writes to tags. Picard Tag Mapping contains more technical information on how these

are further mapped into each tag format.

17.2.5 How do I edit tags in several files at once?

1. Click and select several files with Ctrl or Shift.

2. The metadata view at the bottom will show which tags are present in the selected

files and whether they are the same across all files or different.

3. If you edit any value in the “New values” column you will change this tag for all

selected files.

4. You need to click Save in order to persist these changes to your files.

Please understand that Picard is not designed as a general purpose tag editor. Its

primary goal is to retrieve community-maintained MusicBrainz data to write into your

tags. Some secondary goals include:

• allowing rule-based customization of that data using scripts and plugins

• encouraging users to create an account and fix and update data via the Music-

Brainz website, thus sharing their work with the rest of the community rather than

simply fixing their tags locally.

To that end, Picard is likely to never have as much development focus on manual bulk

editing of tags as other general purpose editors (e.g.: Mp3tag, foobar2000, or even

many library managers such as iTunes, Windows Media Player, and MediaMonkey).

That doesn’t mean that the team won’t welcome patches in this area!

17.2.6 Why is saving files sometimes slow, but saving a second time
much faster?

In most file formats the tags are near the beginning of the file, before the actual music

data. If changed tags get written to the file and the newly written tags take more space

than before the entire file needs to be rewritten. This is usually much slower than just

rewriting part of the file containing the tags, especially for larger files and/or if the files

are on a slow storage (e.g. a network share or slow external drive).

To mitigate the issue most tagging software (including Picard) leaves some free space

(the so called padding) after the tags and before the actual music data. If the newly

written are only a bit larger than before this free space can be used instead of rewriting

the entire files. Likewise if the newly written tags take less space than before this only

leads to an increase in padding, avoiding rewriting the file.

This all means that when you add many tags to the files (or if there is no or only

small padding) you experience slow writing speed. If you do only small changes or

just remove and later re-add tags the writing is much faster.

234 Chapter 17. Frequently Asked Questions

https://picard.musicbrainz.org/docs/mappings/
https://www.mp3tag.de/en/
https://www.foobar2000.org/

MusicBrainz Picard, Release v2.12

17.2.7 Why does Picard not use Vinyl style track numbers (e.g. A1,
A2, …) by default?

For Vinyl releases the track numbers on MusicBrainz are usually entered as A1, A2,

…, B1, B2, … and so on. Other releases might use even different more uncommon

numbering schemes. Yet Picard will by default always write decimal track numbers,

starting with 1 for the first track on a medium.

The main reason for this is that this is how track numbers are defined for most file

formats. The formats expect decimal numbers, and likewise music players might only

expect decimal numbers when reading the files.

If you really want to you can use the scripting variable %_musicbrainz_tracknumber%

which always holds the track number as it was entered in the MusicBrainz database.

The following script will set the tracknumber tag to the value as displayed in the Music-

Brainz database:

$set(tracknumber,%_musicbrainz_tracknumber%)

Please be aware that for MP4 files this will result in the track number not being saved,

as the MP4 format does not allow for non integer values in this tag. For other formats

it depends on the playback software and devices you use if they can handle these

non-standard track numbers.

17.2.8 The built-in audio player cannot play my file. Which formats
does it support?

The formats supported by the built-in audio player depend on the formats supported

by your operating system.

Windows:

The supported formats depend on the installed codecs. Depending on the

Windows version certain codecs are pre-installed, but you can install addi-

tional codecs.

You might want to install the Directshow Filters for Ogg to add support for

Ogg Vorbis, Ogg Speex, Ogg Theora, Ogg FLAC, native FLAC, and WebM files.

See also:

Additional information is available from Microsoft’s Codecs FAQ.

Linux:

On Linux systems the player uses GStreamer which supports most common

audio formats, although some distributions might exclude some codecs due

to licensing issues. For the widest format support make sure you install all

of the GStreamer plugins available for your distribution.

17.2. File Formats 235

https://xiph.org/dshow/downloads/
https://support.microsoft.com/en-us/help/15070/windows-media-player-codecs-frequently-asked-questions

MusicBrainz Picard, Release v2.12

17.2.9 I am using Fedora. Why doesn’t acoustic fingerprinting work?

Acoustic fingerprinting in Picard uses a tool called fpcalc, which is not available in

Fedora. You can get it by installing the chromaprint-toolspackage from the RPM Fu-

sion repository. This functionality is not contained in the main Fedora picard package

because it requires the ffmpeg package which cannot be distributed by Fedora. Af-

ter enabling the “rpmfusion-free” RPM Fusion repository, install the package (as root)

using:

yum install chromaprint-tools

17.3 Configuration

17.3.1 Where is the Picard configuration saved?

Picard saves the configuration in the file Picard.ini. Its location depends on the

operating system:

Windows:

%APPDATA%\MusicBrainz\Picard.ini

This usually will be C:\Users\YourUserName\AppData\Roaming\

MusicBrainz, where YourUserName should be replaced with your actual

Windows user name.

macOS, Linux and other Unix like systems:

$HOME/.config/MusicBrainz/Picard.ini

17.3.2 I tagged a file in Picard, but iTunes is not seeing the tags!

First, you need to force iTunes to re-read the information from your tags and update

its library. This is discussed in the iTunes Guide.

Additionally, iTunes has a known bug in its ID3v2.4 implementation, which makes it

unable to read such tags if they also contain embedded cover art. As a work-around,

you can configure Picard to write ID3v2.3 tags.

236 Chapter 17. Frequently Asked Questions

https://rpmfusion.org/
https://rpmfusion.org/
https://fedoraproject.org/wiki/Forbidden_items
https://rpmfusion.org/Configuration
https://musicbrainz.org/doc/iTunes_Guide

MusicBrainz Picard, Release v2.12

17.3.3 My tags are truncated to 30 characters in Windows Media
Player!

Picard’s default settings write ID3v2.4 and ID3v1 tags to files. Older WMP versions

can’t read ID3v2.4, so it falls back to ID3v1 which has a limitation of 30 characters per

title. To resolve this issue, configure Picard to write ID3v2.3 tags instead.

Since Windows 10 Creators Update (version 1703) ID3v2.4 is supported and the above

issue should no longer apply.

17.3.4 How do I tell Picard which browser to use?

On Windows, macOS, GNOME and KDE, Picard uses the default browser that has been

configured for the system. On other systems, you can use the BROWSER environment

variable.

For example:

export BROWSER="firefox '%s' &"

Another approach that works in some GNU/Linux systems is the following command:

sudo update-alternatives --config x-www-browser

This should present you with a list of existing browsers in your system, allowing you to

select the one to use by default.

17.3. Configuration 237

CHAPTER

EIGHTEEN

TUTORIALS

18.1 Writing a File Naming Script

Writing a script to organize and name your files is actually not that hard – just don’t

get intimidated by all the ‘$’, ‘%’ and parentheses. If you can write down a pattern like

“ARTIST - (YEAR) ALBUM NAME/TRACK - SONG TITLE” of how you want the files

and folders named, you can quite easily translate this to the proper script.

To get started, first open the File Naming Script Editor, either by selecting “Options →
Open file naming script editor…” from Picard’s main menu bar or by clicking the Edit

script… button on the File Naming Options configuration page. From this screen, you

can start a new script for your work.

Note that the use of a ‘/’ in the formatting string separates the output directory from

the file name. The formatting string is allowed to contain any number of ‘/’ characters.

Everything before the last ‘/’ is the directory location, and everything after the last ‘/’

becomes the file’s name. In our example, we only have one ‘/’ character, meaning

that we will have one directory level for the album which will contain the songs for

that album.

First, let’s have a look at what we need. You see a list of the available tags in the

Basic Tags section. We want the ARTIST name, so available tags for this could be

albumartist or artist. This should be the name for an album folder, so albumartist

sounds like what we need. To get the actual value for a tag you need to enclose its

name in percent signs. So let’s start:

%albumartist%

Now we want the YEAR. There is no year tag, but there is date. Let’s use this for now.

If we want to add extra text like the “-” just write it down. We need to be careful with

the parentheses, because those are special variables in scripting. We need to prefix

them with a backslash. Let’s add this all:

%albumartist% - \(%date%\)

Now we want the ALBUM NAME. That’s simple, just use album:

238

MusicBrainz Picard, Release v2.12

%albumartist% - \(%date%\) %album%

That takes care of the directory portion of the renaming. The next part is the TRACK

number and SONG TITLE. The track number is available as tracknumber and the title

of the track is simply title. Adding these to our script we get:

%albumartist% - \(%date%\) %album%/%tracknumber% - %title%

You can see that this looks nearly like the pattern that we said we wanted at the start.

It’s not perfect yet for a few reasons. What if there are 10 or more tracks on the album

and they don’t sort properly in the directory listing? Also, we get a full date instead

of just the year. Finally, sometimes if you tag existing files they might not have the

albumartist set, just artist.

Let’s fix the track number first. We can take care of that by using the $num function

to add a leading zero to the number shown for tracks 1 through 9:

%albumartist% - \(%date%\) %album%/$num(%tracknumber%,2) - %title%

Now let’s fix the ARTIST. We can fallback to using artist if albumartist is not avail-

able by using:

$if2(%albumartist%,%artist%) - \(%date%\) %album%/$num(%tracknumber%,

→˓2) - %title%

The $if2 function uses the first value that is not empty, so if albumartist is empty it

uses artist instead.

For the date tag the dates from MusicBrainz are always formatted as YYYY-MM-DD. We

only need the year, so let’s get just the first 4 characters with the $left function:

$if2(%albumartist%,%artist%) - \($left(%date%,4)\) %album%/$num(

→˓%tracknumber%,2) - %title%

What happens if there is no date tag information? Sometimes MusicBrainz does not

have the release date of an album set as it is not yet known or hasn’t been entered

into the database. It would be great to omit the entire date with the parentheses in

this case. Let’s use the $if function to check whether the date is set:

$if2(%albumartist%,%artist%) - $if(%date%,\($left(%date%,4)\))%album%/

→˓$num(%tracknumber%,2) - %title%

Alternately, we can enter a placeholder such a “0000” if the date is missing:

$if2(%albumartist%,%artist%) - \($if(%date%,$left(%date%,4),0000)\)

→˓%album%/$num(%tracknumber%,2) - %title%

And there you have it – the final script for naming your files developed from the pattern

that we used as our starting point.

18.1. Writing a File Naming Script 239

MusicBrainz Picard, Release v2.12

See also:

For additional information about the available tags and variables please see the Tags

& Variables section. For information about the script functions available please see

the Scripting Functions section.

240 Chapter 18. Tutorials

MusicBrainz Picard, Release v2.12

18.2 Understanding Acoustic Fingerprinting and

AcoustIDs

The fingerprinting is the basis for the whole AcoustID song identification system. The

audio fingerprint captures the characteristics of the recording, but there can be slight

differences in the fingerprint of files of the same recording caused by such things as

different encoding or bitrate. Fingerprints, along with the track metadata, are submit-

ted to the AcoustID website where the AcoustID server combines fingerprints that are

similar enough and assigns them a single AcoustID. This is actually what makes the

AcoustID system really work for audio identification. The same recording can gener-

ate many slightly different fingerprints, but the AcoustID represents what the service

identifies as the same recording for all of the associated fingerprints.

What Picard does is as follows:

1. When you click “Scan” on a file, Picard generates the audio fingerprint for the file,

using the fpcalc command line utility provided by AcoustID.

2. Picard uses this fingerprint to lookup an AcoustID from the AcoustID server. The

AcoustID server will compare the fingerprint and will try to match it to an existing

AcoustID. There are three possibilities:

• It doesn’t find an AcoustID. The lookup failed.

• The AcoustID server finds an existing AcoustID for the submitted fingerprint,

but it is not associated with any MusicBrainz recording. The lookup failed.

• The AcoustID server finds an existing AcoustID for the submitted fingerprint

and it is associated with a MusicBrainz recording. Picard matches the file to

one of the MusicBrainz recordings linked to the AcoustID.

If there was no AcoustID found you can use the “Submit” button in Picard to submit

the fingerprints to the AcoustID server once you have matched the files to the proper

recordings. If there is no AcoustID already existing for a fingerprint, the server will

generate a new AcoustID (which can take some time). It will also link the AcoustID

to the MusicBrainz recording identified by the submitted metadata. Please see the

Submitting Acoustic Fingerprints section for a detailed step-by-step procedure.

You don’t need the AcoustID fingerprinting software to manually generate new

AcoustIDs. The difference is, that the fingerprinting software is meant to be run on

already tagged files, so if it cannot find an AcoustID it will immediately do the sub-

mission. For Picard the AcoustID is primarily an identification tool, and because the

files are considered untagged at this identification stage, you can only do the sub-

mission once the files have been properly matched to a MusicBrainz recording. You

will also find that after submission Picard will not automatically fetch the newly gener-

ated AcoustIDs. This is because the generation can take some time, and the response

received from the AcoustID server does not contain newly generated AcoustIDs. How-

ever, if you do another scan on the files after submission, the AcoustID should be

available.

18.2. Understanding Acoustic Fingerprinting and AcoustIDs 241

MusicBrainz Picard, Release v2.12

Note: If files are matched using “Scan” and then “Generate fingerprints” is used on

them, submission will not be enabled, because they have already been matched by

fingerprint. This is the same situation as just using “Scan”, because after the files are

scanned the resulting fingerprint / recording ID is remembered as already having been

submitted.

Also if you have files matched to tracks and use “Generate fingerprints” and are able to

successfully submit the fingerprints, attempting to use “Generate fingerprints” for the

same files and tracks again does not re-enable submission for those files. The reason

is the same: Picard remembers the fingerprint / recording ID combinations already

being submitted. However, restarting Picard (or even just removing and re-adding

those files) and then using “Generate fingerprints” will enable submission again.

Fingerprints are submitted in batches depending on fingerprint size, but often up to 200

or 250 fingerprints can be submitted in one batch. A submission request for a batch

might fail due to various reasons such as networking or server issues. If a request

fails, all of the fingerprints of this submission batch are still marked as not having

been submitted and submission could be retried.

You can also use “Generate fingerprints” on either unmatched or matched files. This

will only generate the acoustic fingerprints without doing any lookup on the AcoustID

server. This also means there will be no AcoustID tag created. However, you can

submit these fingerprints if you match the fingerprinted files to a track.

242 Chapter 18. Tutorials

MusicBrainz Picard, Release v2.12

18.3 Handling of multiple release countries

Some releases, especially digital releases, can have a very long list of release coun-

tries, sometimes listing all of the world’s countries except for a few where the release

is not officially available. Picard offers some tools to handle this.

Let’s take the release Bleach, by Nirvana (MusicBrainz release

adab3feb-1822-4d27-a997-db7d6c9688c0) as an example.

By default Picard will write a single releasecountry tag to the files. Prior to v2.3.1,

Picard had been populating the tag with what the MusicBrainz server returned as the

country for the release. If there were multiple release events, this country field was

just filled with the first one in alphabetical order (Afghanistan in our example). Picard

v2.3.1 introduced some options to better handle this.

18.3.1 Using preferred release countries

If you configure preferred release countries in “Options → Metadata → Preferred Re-

leases”. Picard will use the first country from the preferred release countries that is

also in the list of release events. So if you have configured preferred release coun-

tries to be Europe, Canada, Germany and UK, for our example that would mean the

releasecountry tag gets set to Canada.

18.3.2 Using scripting to set a different country

Picard v2.3.1 also added a new variable %_releasecountries%, which provides the

complete list of release countries for a release as a multi-value variable. You can use

this to set different values for the releasecountry tag.

For example, the following script would set it to “[International]” if there are 10 or more

release countries:

$if($gte($lenmulti(%_releasecountries%),10),$set(releasecountry,

→˓[International]))

Of course you can adjust the count and the replacement text to your liking. You can

also choose to save the entire list instead of just a single country to this tag using the

script:

$setmulti(releasecountry,%_releasecountries%)

Perhaps you prefer to limit this list to the first few entries. The following example just

uses the first 6 countries:

$setmulti(releasecountry,$slice(%_releasecountries%,0,6))

18.3. Handling of multiple release countries 243

https://musicbrainz.org/release/adab3feb-1822-4d27-a997-db7d6c9688c0

MusicBrainz Picard, Release v2.12

18.3.3 What’s missing?

Countries are currently written to the tags as their ISO 3166-1 country code, with some

special values added for historical countries and things like [Europe] or [Worldwide].

These codes are not always easily recognizable or obvious, such as “DZ” for Algeria or

“DE” for Germany. You can of course use scripting to make these more readable. For

example, if you want to see “United Kingdom” instead of “GB” in this tag use:

$if($eq(%releasecountry%,GB),$set(releasecountry,United Kingdom))

This might work if you deal only with a couple of countries in your collection, or you

just want to handle some special cases like using “Europe” instead of “XE” such as in

the following script:

$if($eq(%releasecountry%,XE),$set(releasecountry,Europe))

$if($eq(%releasecountry%,XU),$set(releasecountry,[Unknown]))

$if($eq(%releasecountry%,XW),$set(releasecountry,[Worldwide]))

$if($eq(%releasecountry%,XG),$set(releasecountry,DDR))

A simpler method would be to use the $countryname() function introduced in Picard

v2.7 to easily convert the code into a readable name, such as in the following scripts:

$noop(Convert only %releasecountry%)

$set(releasecountry,$countryname(%releasecountry%,yes))

$noop(List all countries by name)

$setmulti(releasecountry,$map(%_releasecountries%,$countryname(%_loop_

→˓value%,yes)))

$noop(List only the first 6 countries by name)

$setmulti(temp,$slice(%_releasecountries%,0,6))

$setmulti(releasecountry,$map(%temp%,$countryname(%_loop_value%,yes)))

244 Chapter 18. Tutorials

MusicBrainz Picard, Release v2.12

18.4 Writing a Plugin

You have a great idea for extending Picard with a plugin but don’t know where to start.

Unfortunately, this is a common problem and prevents far too many of those great

ideas from ever seeing the light of day. Perhaps this tutorial will help get you started

in turning your great idea a reality.

Picard plugins are written in Python, so that’s the programming language you’ll be

using. Please check the INSTALL.md file in the Picard repository on GitHub to see

the minimum version requirements. This is Python 3.6 as of the time this tutorial

was written. Also refer to the Plugins API for additional information, including the

parameters passed to each of the function types.

For the purpose of this tutorial, we’re going to develop a simple plugin to save the

argument information provided by Picard to track and release processing plugins.

This will demonstrate how the information is accessed, and will provide a utility that

you might find useful when developing your own plugins.

The first thing that we’ll need to include is the header information that describes the

plugin.

PLUGIN_NAME = "Example plugin"

PLUGIN_AUTHOR = "This authors name"

PLUGIN_DESCRIPTION = "This plugin is an example"

PLUGIN_VERSION = '0.1'

PLUGIN_API_VERSIONS = ['2.2']

PLUGIN_LICENSE = "GPL-2.0-or-later"

PLUGIN_LICENSE_URL = "https://www.gnu.org/licenses/gpl-2.0.html"

Next we list the modules that will be referenced in our code. In this case, we will be

using the os module to build the output file path, and the json module to format the

argument dictionary text for readability. We will be saving our output file to the base

directory used for file naming so we import the config module from Picard, as well as

the log module so that we can write debug or error messages to Picard’s log. Finally,

we import the appropriate processing hooks and plugin priority settings.

import json

import os

from picard import config, log

from picard.metadata import (register_album_metadata_processor,

register_track_metadata_processor)

from picard.plugin import PluginPriority

Warning: To ensure maximum compatibility, you should only use standard Python

modules, or third-party modules that are already included in Picard. If you use other

modules, then the plugin will not function properly if used on a system that doesn’t

18.4. Writing a Plugin 245

https://github.com/metabrainz/picard/blob/master/INSTALL.md

MusicBrainz Picard, Release v2.12

have the proper version of the module installed or if someone is using an executable

version of Picard.

Now we can start adding the code that we want Picard to execute. First we’ll identify

the output file to store the parameter information provided by Picard. This is a file

named data_dump.txt to be stored in the file naming output directory. We find the

name of the configuration setting we need, move_files_to, by examining the Picard

source code for the corresponding option setting screen. In this case it is a TextOption

in the RenamingOptionsPage class found in the file picard/ui/options/renaming.py.

file_to_write = os.path.join(config.setting["move_files_to"], "data_

→˓dump.txt")

The next part is a function to write a Python object to our output file. To allow the same

function to be used for different situations, we include parameters to identify the type

of line (input type), the object to write, and options for writing to JSON format and

appending or overwriting an existing output file. In our case, we want to overwrite the

file each time a new release is processed, but always append the track information to

the file.

We also include error checking to write an entry to the Picard log in the event of an

exception.

def write_line(line_type, object_to_write, dump_json=False,␣

→˓append=True):

file_mode = 'a' if append else 'w'

try:

with open(file_to_write, file_mode, encoding="UTF-8") as f:

if dump_json:

f.write('{0} JSON dump follows:\n'.format(line_type,))

f.write('{0}\n\n'.format(json.dumps(object_to_write,␣

→˓indent=4)))

else:

f.write("{0:s}: {1:s}\n".format(line_type, str(object_

→˓to_write),))

except Exception as ex:

log.error("{0}: Error: {1}".format(PLUGIN_NAME, ex,))

Now we include the functions to be called when releases and tracks are retrieved by

Picard. The release function hook provides three arguments, and the track function

hook provides four arguments. The argument types are described in the Plugins API

section. The first argument, album, is an object that holds information about the se-

lected album. See the Album class in the picard/album.py file in Picard’s source code

for more information.

The second argument, metadata, is an object that holds the tags and variables that

Picard has assigned for the current release and track. This is where you can add or

edit the tags and variables that Picard makes available to the user for scripts. See

246 Chapter 18. Tutorials

https://github.com/metabrainz/picard/blob/master/picard/ui/options/renaming.py
https://github.com/metabrainz/picard/blob/master/picard/album.py

MusicBrainz Picard, Release v2.12

the Metadata class in the picard/metadata.py file in Picard’s source code for more

information.

The track and release arguments are Python dictionaries containing the information

provided in response to Picard’s calls to the MusicBrainz API. The information may

differ, depending on the user’s Metadata Options settings for things like “Use release

relationships” or “Use track relationships”.

def dump_release_info(album, metadata, release):

write_line('Release Argument 1 (album)', album, append=False)

write_line('Release Argument 3 (release)', release, dump_json=True)

def dump_track_info(album, metadata, track, release):

write_line('Track Argument 1 (album)', album)

write_line('Track Argument 3 (track)', track, dump_json=True)

write_line('Track Argument 4 (release)', release, dump_json=True)

Finally, we need to register our functions so that they are processed with the appropri-

ate events. In our case, we set the priority to HIGH so that we output the parameter

information as it is received by Picard before any other plugins have an opportunity to

modify it.

Register the plugin to run at a HIGH priority so that other plugins␣

→˓will

not have an opportunity to modify the contents of the metadata␣

→˓provided.

register_album_metadata_processor(dump_release_info,␣

→˓priority=PluginPriority.HIGH)

register_track_metadata_processor(dump_track_info,␣

→˓priority=PluginPriority.HIGH)

The complete plugin code file looks something like:

PLUGIN_NAME = "Example plugin"

PLUGIN_AUTHOR = "This authors name"

PLUGIN_DESCRIPTION = "This plugin is an example"

PLUGIN_VERSION = '0.1'

PLUGIN_API_VERSIONS = ['2.2']

PLUGIN_LICENSE = "GPL-2.0-or-later"

PLUGIN_LICENSE_URL = "https://www.gnu.org/licenses/gpl-2.0.html"

import json

import os

from picard import config, log

from picard.metadata import (register_album_metadata_processor,

register_track_metadata_processor)

from picard.plugin import PluginPriority

(continues on next page)

18.4. Writing a Plugin 247

https://github.com/metabrainz/picard/blob/master/picard/metadata.py

MusicBrainz Picard, Release v2.12

(continued from previous page)

file_to_write = os.path.join(config.setting["move_files_to"], "data_

→˓dump.txt")

def write_line(line_type, object_to_write, dump_json=False,␣

→˓append=True):

file_mode = 'a' if append else 'w'

try:

with open(file_to_write, file_mode, encoding="UTF-8") as f:

if dump_json:

f.write('{0} JSON dump follows:\n'.format(line_type,))

f.write('{0}\n\n'.format(json.dumps(object_to_write,␣

→˓indent=4)))

else:

f.write("{0:s}: {1:s}\n".format(line_type, str(object_

→˓to_write),))

except Exception as ex:

log.error("{0}: Error: {1}".format(PLUGIN_NAME, ex,))

def dump_release_info(album, metadata, release):

write_line('Release Argument 1 (album)', album, append=False)

write_line('Release Argument 3 (release)', release, dump_json=True)

def dump_track_info(album, metadata, track, release):

write_line('Track Argument 1 (album)', album)

write_line('Track Argument 3 (track)', track, dump_json=True)

write_line('Track Argument 4 (release)', release, dump_json=True)

Register the plugin to run at a HIGH priority so that other plugins␣

→˓will

not have an opportunity to modify the contents of the metadata␣

→˓provided.

register_album_metadata_processor(dump_release_info,␣

→˓priority=PluginPriority.HIGH)

register_track_metadata_processor(dump_track_info,␣

→˓priority=PluginPriority.HIGH)

That’s it for our plugin code. Now we need to package it so that we can install it into

Picard. If we’re going to just use it locally for ourself, the easiest way is to just name

the file something like my_plugin.py. If there are multiple files, such as plugins that

include additional settings screens, then the files should be saved in a directory such

as my_plugin with the main file named __init__.py. The directory is then archived

into a my_plugin.zip file, with the file name the same as the included directory name.

The contents of the archive would show as something like:

248 Chapter 18. Tutorials

MusicBrainz Picard, Release v2.12

my_plugin/__init__.py

my_plugin/another_file.py

my_plugin/etc

If you’ve made it this far, congratulations! You’ve just created your first Picard plugin.

Now you have a starting point for turning that great idea into reality.

See also:

Relevant portions of Picard’s source code including:

• Option settings modules in picard/ui/options/ for names used to access the set-

tings.

• Album class in the picard/album.py file.

• Metadata class and metadata processing plugin registration functions in the pi-

card/metadata.py file.

• PluginPriority class in the picard/plugin.py file.

18.4. Writing a Plugin 249

https://github.com/metabrainz/picard/tree/master/picard/ui/options
https://github.com/metabrainz/picard/blob/master/picard/album.py
https://github.com/metabrainz/picard/blob/master/picard/metadata.py
https://github.com/metabrainz/picard/blob/master/picard/metadata.py
https://github.com/metabrainz/picard/blob/master/picard/plugin.py

MusicBrainz Picard, Release v2.12

18.5 Loading releases with MusicBrainz for Android

If you have an Android phone you can use the MusicBrainz for Android app to search

for releases by text search or by barcode and load them into Picard running on your

computer.

This is useful for example if you have previously ripped your CDs and now you want to

tag your ripped files with Picard using exactly the data for your the releases you own.

You can then use your phone to scan the barcodes of your CDs and have their data

loaded into Picard, then use this data to tag your local files.

For this to work you need both your phone and computer to be connected to the same

network.

18.5.1 Configuring Picard

In Options → Options… → Advanced → Network enable “Browser Integration” and dis-

able “Listen only on localhost”. It is recommended that you keep the listening port on

the default value 8000, but you can change that as well.

Once you have saved the options, check whether Picard is showing a message “Lis-

tening on port 8000” in the status bar on the lower right of the main window.

The actual port number can vary, but the default is 8000. Note the port number, you

will need it to configure the Android app in the next step.

See also:

Network options

18.5.2 Installing and configuring the MusicBrainz Android app

Install MusicBrainz for Android on your phone. You can download the latest version of

the app either from the Google Play Store or F-Droid.

Once installed, launch the app and tap on the settings icon on the upper right. Scroll

down to the Picard settings. For the IP Address enter the IP address of your computer

on which Picard is running. Depending on your local network setup you might also be

able to enter the hostname of your computer instead of the IP address.

250 Chapter 18. Tutorials

https://github.com/metabrainz/musicbrainz-android
https://play.google.com/store/apps/details?id=org.metabrainz.android
https://f-droid.org/packages/org.metabrainz.android/

MusicBrainz Picard, Release v2.12

For the Port enter Picard’s listening port as displayed in Picard’s main screen (see the

previous section). The default is 8000.

Before you continue make sure Picard is running and the “Listening on port…” status

message is shown. Also make sure your phone is connected to your local network.

18.5.3 Loading releases by barcode

You can use your phone as a barcode scanner to load the metadata for your physical

media:

1. On the main screen of the Android app tap on “Scan”.

18.5. Loading releases with MusicBrainz for Android 251

MusicBrainz Picard, Release v2.12

2. Scan the barcode of a CD, LP or other music media.

252 Chapter 18. Tutorials

MusicBrainz Picard, Release v2.12

3. If a release with the scanned barcode is found on MusicBrainz the app will load

and show the release details.

18.5. Loading releases with MusicBrainz for Android 253

MusicBrainz Picard, Release v2.12

4. Tap on “Send to Picard”. If everything was configured correctly the release will

be loaded into Picard running on your computer.

254 Chapter 18. Tutorials

MusicBrainz Picard, Release v2.12

You can now continue tagging your local files by matching them to the loaded tracks

as described in Matching Files to Tracks.

Note: If you only want to use the barcode scanner functionality to find and load

releases for your physical CDs, LPs or other music media, you can also use the Picard

Barcode Scanner app. The functionality and setup is similar to what is described above,

but the app is focused on the barcode scanning and sending the results to Picard.

18.5.4 Loading releases by search

Instead of searching by barcode you can also do a text search on your phone:

1. On the main screen of the Android app tap on “Search”.

18.5. Loading releases with MusicBrainz for Android 255

https://github.com/phw/PicardBarcodeScanner
https://github.com/phw/PicardBarcodeScanner

MusicBrainz Picard, Release v2.12

2. On the search page select “Release” and enter a search term, e.g. an album title

or artist name.

256 Chapter 18. Tutorials

MusicBrainz Picard, Release v2.12

3. The search results will show a list of matching releases. Tap on one to show the

release details.

18.5. Loading releases with MusicBrainz for Android 257

MusicBrainz Picard, Release v2.12

4. Tap on “Send to Picard”. If everything was configured correctly the release will

be loaded into Picard running on your computer.

258 Chapter 18. Tutorials

MusicBrainz Picard, Release v2.12

18.5.5 Loading releases from the Tagger

Instead of finding a release by barcode or a search to send to Picard, you can also send

a release from a tagged audio file currently stored on your device:

1. On the main screen of the Android app tap on “Tagger”.

18.5. Loading releases with MusicBrainz for Android 259

MusicBrainz Picard, Release v2.12

2. On the tagger, select your release and tap the MusicBrainz icon near the bottom

of the screen.

260 Chapter 18. Tutorials

MusicBrainz Picard, Release v2.12

3. If everything was configured correctly, the release will be loaded into Picard run-

ning on your computer.

18.5. Loading releases with MusicBrainz for Android 261

MusicBrainz Picard, Release v2.12

262 Chapter 18. Tutorials

CHAPTER

NINETEEN

APPENDICES

19.1 Appendix A: Plugins API

19.1.1 Plugin Metadata

Each plugin must provide some metadata as variables. Those variables should be

placed at the top of the file.

PLUGIN_NAME = "Example plugin"

PLUGIN_AUTHOR = "This authors name"

PLUGIN_DESCRIPTION = """

This plugin is an example

Since *Picard 2.7* the description can be formatted using

[Markdown](https://daringfireball.net/projects/markdown/) syntax.

If you use Markdown formatting make sure the minimum version in

`PLUGIN_API_VERSIONS` is set to 2.7.

"""

PLUGIN_VERSION = '0.1'

PLUGIN_API_VERSIONS = ['2.7', '2.8']

PLUGIN_LICENSE = "GPL-2.0-or-later"

PLUGIN_LICENSE_URL = "https://www.gnu.org/licenses/gpl-2.0.html"

PLUGIN_USER_GUIDE_URL = "https://my.program.site.org/example_plugin_

→˓documentation.html"

Variables explanation:

• PLUGIN_NAME should be a short but descriptive name for the plugin.

• PLUGIN_DESCRIPTION should be as simple as possible, while still describing

the main function. If your plugin targets Picard 2.7 or later you can use Mark-

down syntax to format the text. If your plugin targets earlier versions you can

instead use simple HTML formatting. Please restrict the usage of HTML to basic

text formatting (e.g. ,), links (<a>) and lists (,).

• PLUGIN_VERSION should be filled with the version of Plugin. Plugin versions

should be in the format x.y.z (e.g.: “1.0” or “2.12.4”). It is recommended that

you use Semantic Versioning.

263

https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://semver.org/

MusicBrainz Picard, Release v2.12

• PLUGIN_API_VERSIONS should be set to the versions of Picard this plugin to

run with. New Picard versions will usually support older plugin API versions, but

on breaking changes support for older plugin versions can be dropped. Versions

available for Picard 2 are “2.0”, “2.1” and “2.2”.

• PLUGIN_LICENSE should be set with the license name of the plugin. If possible

use one of the license names from the SPDX License List, but you are welcomed

to use another license if the one you chose is not available in the list.

• PLUGIN_LICENSE_URL should be set to a URL pointing to the full license text.

• PLUGIN_USER_GUIDE_URL should be set to a URL pointing to the documenta-

tion for the plugin. This variable is optional and may be omitted. If a URL is

provided, it will be shown as a clickable link in the description displayed for the

plugin in the Plugins option settings screen.

19.1.2 Metadata Processors

MusicBrainzmetadata can be post-processed at two levels, album and track. The types

of the arguments passed to the processor functions in the following examples are as

follows:

• album: picard.album.Album

• metadata: picard.metadata.Metadata

• release: dict with release data from MusicBrainz JSON web service

• track: dict with track data from MusicBrainz JSON web service

Album metadata example:

PLUGIN_NAME = "Disc Numbers"

PLUGIN_AUTHOR = "Lukas Lalinsky"

PLUGIN_DESCRIPTION = "Moves disc numbers from album titles to tags."

from picard.metadata import register_album_metadata_processor

import re

def remove_discnumbers(tagger, metadata, release):

matches = re.search(r"\(disc (\d+)\)", metadata["album"])

if matches:

metadata["discnumber"] = matches.group(1)

metadata["album"] = re.sub(r"\(disc \d+\)", "", metadata["album

→˓"])

register_album_metadata_processor(remove_discnumbers)

264 Chapter 19. Appendices

https://spdx.org/licenses/

MusicBrainz Picard, Release v2.12

Track metadata example:

PLUGIN_NAME = "Feat. Artists"

PLUGIN_AUTHOR = "Lukas Lalinsky"

PLUGIN_DESCRIPTION = "Removes feat. artists from track titles."

from picard.metadata import register_track_metadata_processor

import re

def remove_featartists(tagger, metadata, track, release):

metadata["title"] = re.sub(r"\(feat. [^)]*\)", "", metadata["title

→˓"])

register_track_metadata_processor(remove_featartists)

19.1.3 Event Hooks

Plugins can register themselves to listen for different events. Currently the following

event hooks are available:

file_post_load_processor(file)

This hook is called after a file has been loaded into Picard. This could for example be

used to load additional data for a file. Usage:

from picard.file import register_file_post_load_processor

def file_post_load_processor(file):

pass

register_file_post_load_processor(file_post_load_processor)

file_post_save_processor(file)

This hook is called after a file has been saved. This can for example be used to run

additional post-processing on the file or write extra data. Note that the file’s metadata

is already the newly saved metadata. Usage:

from picard.file import register_file_post_save_processor

def file_post_save_processor(file):

pass

register_file_post_save_processor(file_post_save_processor)

19.1. Appendix A: Plugins API 265

MusicBrainz Picard, Release v2.12

file_post_addition_to_track_processor(track, file)

This hook is called after a file has been added to a track (on the right-hand pane of

Picard).

from picard.file import register_file_post_addition_to_track_processor

def file_post_addition_to_track_processor(track, file):

pass

register_file_post_addition_to_track_processor(file_post_addition_to_

→˓track_processor)

file_post_removal_from_track_processor(track, file)

This hook is called after a file has been removed from a track (on the right-hand pane

of Picard).

from picard.file import register_file_post_removal_from_track_processor

def file_post_removal_from_track_processor(track, file):

pass

register_file_post_removal_from_track_processor(file_post_removal_from_

→˓track_processor)

album_post_removal_processor(album)

This hook is called after an album has been removed from Picard.

from picard.album import register_album_post_removal_processor

def album_post_removal_processor(album):

pass

register_album_post_removal_processor(album_post_removal_processor)

Note: Event hooks have been available since API version 2.2.

266 Chapter 19. Appendices

MusicBrainz Picard, Release v2.12

19.1.4 File Formats

Plugins can extend Picard with support for additional file formats. See the existing

file format implementations for details on how to implement the _load and _save

methods. Example:

PLUGIN_NAME = "..."

PLUGIN_AUTHOR = "..."

PLUGIN_DESCRIPTION = "..."

PLUGIN_VERSION = '...'

PLUGIN_API_VERSIONS = ['...']

PLUGIN_LICENSE = "..."

PLUGIN_LICENSE_URL = "..."

from picard.file import File

from picard.formats import register_format

from picard.metadata import Metadata

class MyFile(File):

EXTENSIONS = [".foo"]

NAME = "Foo Audio"

def _load(self, filename):

metadata = Metadata()

Implement loading and parsing the file here.

This method is supposed to return a Metadata instance filled

with all the metadata read from the file.

metadata['~format'] = self.NAME

return metadata

def _save(self, filename, metadata):

Implement saving the metadata to the file here.

pass

register_format(MyFile)

19.1.5 Tagger Script Functions

To define new tagger script functions use register_script_function(function,

name=None) from the picard.script module. parser is an instance of picard.

script.ScriptParser, and the rest of the arguments passed to it are the arguments

from the function call in the tagger script. Example:

PLUGIN_NAME = "Initials"

PLUGIN_AUTHOR = "Lukas Lalinsky"

PLUGIN_DESCRIPTION = "Provides tagger script function $initials(text)."

(continues on next page)

19.1. Appendix A: Plugins API 267

https://github.com/metabrainz/picard/tree/master/picard/formats

MusicBrainz Picard, Release v2.12

(continued from previous page)

PLUGIN_VERSION = '0.1'

PLUGIN_API_VERSIONS = ['2.0']

PLUGIN_LICENSE = "GPL-2.0"

PLUGIN_LICENSE_URL = "https://www.gnu.org/licenses/gpl-2.0.txt"

from picard.script import register_script_function

def initials(parser, text):

return "".join(a[:1] for a in text.split(" ") if a[:1].isalpha())

register_script_function(initials)

register_script_function supports two optional arguments:

• eval_args: If this is False, the arguments will not be evaluated before being

passed to function.

• check_argcount: If this is False the number of arguments passed to the function

will not be verified.

The default value for both arguments is True.

19.1.6 Context Menu Actions

Right-click context menu actions can be added to albums, tracks and files in “Un-

matched Files”, “Clusters” and the “ClusterList” (parent folder of Clusters). Example:

PLUGIN_NAME = u'Remove Perfect Albums'

PLUGIN_AUTHOR = u'ichneumon, hrglgrmpf'

PLUGIN_DESCRIPTION = u'''Remove all perfectly matched albums from the␣

→˓selection.'''

PLUGIN_VERSION = '0.2'

PLUGIN_API_VERSIONS = ['0.15.1']

PLUGIN_LICENSE = "GPL-2.0"

PLUGIN_LICENSE_URL = "https://www.gnu.org/licenses/gpl-2.0.txt"

from picard.album import Album

from picard.ui.itemviews import BaseAction, register_album_action

class RemovePerfectAlbums(BaseAction):

NAME = 'Remove perfect albums'

def callback(self, objs):

for album in objs:

if isinstance(album, Album) and album.is_complete()\

and album.get_num_unmatched_files() == 0\

and album.get_num_matched_tracks() == len(list(album.
(continues on next page)

268 Chapter 19. Appendices

MusicBrainz Picard, Release v2.12

(continued from previous page)

→˓iterfiles()))\

and album.get_num_unsaved_files() == 0 and album.loaded␣

→˓== True:

self.tagger.remove_album(album)

register_album_action(RemovePerfectAlbums())

Use register_x_action where ‘x’ is “album”, “track”, “file”, “cluster” or “clusterlist”.

19.1. Appendix A: Plugins API 269

MusicBrainz Picard, Release v2.12

19.2 Appendix B: Tag Mapping

The following is a mapping between Picard internal tag names and those used by var-

ious tagging formats. The mapping is also available as a table and a spreadsheet.

19.2.1 AcoustID

Internal Name acoustid_id

ID3v2 TXXX:Acoustid Id

Vorbis ACOUSTID_ID

APEv2 ACOUSTID_ID

iTunes MP4 ----:com.apple.iTunes:Acoustid Id

ASF/Windows Media Acoustid/Id

RIFF INFO n/a

19.2.2 AcoustID Fingerprint

Internal Name acoustid_fingerprint

ID3v2 TXXX:Acoustid Fingerprint

Vorbis ACOUSTID_FINGERPRINT

APEv2 ACOUSTID_FINGERPRINT

iTunes MP4 ----:com.apple.iTunes:Acoustid Fingerprint

ASF/Windows Media Acoustid/Fingerprint

RIFF INFO n/a

19.2.3 Album

Internal Name album

ID3v2 TALB

Vorbis ALBUM

APEv2 Album

iTunes MP4 ©alb

ASF/Windows Media WM/AlbumTitle

RIFF INFO IPRD

270 Chapter 19. Appendices

https://picard-docs.musicbrainz.org/downloads/MusicBrainz_Picard_Tag_Map.html
https://picard-docs.musicbrainz.org/downloads/MusicBrainz_Picard_Tag_Map.xlsx

MusicBrainz Picard, Release v2.12

19.2.4 Album Artist

Internal Name albumartist

ID3v2 TPE2

Vorbis ALBUMARTIST

APEv2 Album Artist

iTunes MP4 aART

ASF/Windows Media WM/AlbumArtist

RIFF INFO n/a

19.2.5 Album Artist Sort Order

Internal Name albumartistsort

ID3v2 TSO2 (Picard>=1.2) TXXX:ALBUMARTISTSORT (Picard<=1.1)

Vorbis ALBUMARTISTSORT

APEv2 ALBUMARTISTSORT

iTunes MP4 soaa

ASF/Windows Media WM/AlbumArtistSortOrder

RIFF INFO n/a

19.2.6 Album Sort Order [4]

Internal Name albumsort

ID3v2 TSOA

Vorbis ALBUMSORT

APEv2 ALBUMSORT

iTunes MP4 soal

ASF/Windows Media WM/AlbumSortOrder

RIFF INFO n/a

19.2.7 Arranger

Internal Name arranger

ID3v2 TIPL:arranger (ID3v2.4) IPLS:arranger (ID3v2.3)

Vorbis ARRANGER

APEv2 Arranger

iTunes MP4 n/a

ASF/Windows Media n/a

RIFF INFO n/a

19.2. Appendix B: Tag Mapping 271

MusicBrainz Picard, Release v2.12

19.2.8 Artist

Internal Name artist

ID3v2 TPE1

Vorbis ARTIST

APEv2 Artist

iTunes MP4 ©ART

ASF/Windows Media Author

RIFF INFO IART

19.2.9 Artist Sort Order

Internal Name artistsort

ID3v2 TSOP

Vorbis ARTISTSORT

APEv2 ARTISTSORT

iTunes MP4 soar

ASF/Windows Media WM/ArtistSortOrder

RIFF INFO n/a

19.2.10 Artists

Internal Name artists

ID3v2 TXXX:ARTISTS

Vorbis ARTISTS

APEv2 Artists

iTunes MP4 ----:com.apple.iTunes:ARTISTS

ASF/Windows Media WM/ARTISTS

RIFF INFO n/a

19.2.11 ASIN

Internal Name asin

ID3v2 TXXX:ASIN

Vorbis ASIN

APEv2 ASIN

iTunes MP4 ----:com.apple.iTunes:ASIN

ASF/Windows Media ASIN

RIFF INFO n/a

272 Chapter 19. Appendices

MusicBrainz Picard, Release v2.12

19.2.12 Barcode

Internal Name barcode

ID3v2 TXXX:BARCODE

Vorbis BARCODE

APEv2 Barcode

iTunes MP4 ----:com.apple.iTunes:BARCODE

ASF/Windows Media WM/Barcode

RIFF INFO n/a

19.2.13 BPM [4]

Internal Name bpm

ID3v2 TBPM

Vorbis BPM

APEv2 BPM

iTunes MP4 tmpo

ASF/Windows Media WM/BeatsPerMinute

RIFF INFO n/a

19.2.14 Catalog Number

Internal Name catalognumber

ID3v2 TXXX:CATALOGNUMBER

Vorbis CATALOGNUMBER

APEv2 CatalogNumber

iTunes MP4 ----:com.apple.iTunes:CATALOGNUMBER

ASF/Windows Media WM/CatalogNo

RIFF INFO n/a

19.2.15 Comment [4]

Internal Name comment:description

ID3v2 COMM:description

Vorbis COMMENT

APEv2 Comment

iTunes MP4 ©cmt

ASF/Windows Media Description

RIFF INFO ICMT

19.2. Appendix B: Tag Mapping 273

MusicBrainz Picard, Release v2.12

19.2.16 Compilation (iTunes) [5]

Internal Name compilation

ID3v2 TCMP

Vorbis COMPILATION

APEv2 Compilation

iTunes MP4 cpil

ASF/Windows Media WM/IsCompilation

RIFF INFO n/a

19.2.17 Composer

Internal Name composer

ID3v2 TCOM

Vorbis COMPOSER

APEv2 Composer

iTunes MP4 ©wrt

ASF/Windows Media WM/Composer

RIFF INFO IMUS

19.2.18 Composer Sort Order

Internal Name composersort

ID3v2 TSOC (Picard>=1.3) TXXX:COMPOSERSORT (Picard<=1.2)

Vorbis COMPOSERSORT

APEv2 COMPOSERSORT

iTunes MP4 soco

ASF/Windows Media WM/ComposerSortOrder (Picard>=1.3)

RIFF INFO n/a

19.2.19 Conductor

Internal Name conductor

ID3v2 TPE3

Vorbis CONDUCTOR

APEv2 Conductor

iTunes MP4 ----:com.apple.iTunes:CONDUCTOR

ASF/Windows Media WM/Conductor

RIFF INFO n/a

274 Chapter 19. Appendices

MusicBrainz Picard, Release v2.12

19.2.20 Copyright [4]

Internal Name copyright

ID3v2 TCOP

Vorbis COPYRIGHT

APEv2 Copyright

iTunes MP4 cprt

ASF/Windows Media Copyright

RIFF INFO ICOP

19.2.21 Date [10]

Internal Name date

ID3v2 TDRC (ID3v2.4) TYER + TDAT (ID3v2.3)

Vorbis DATE

APEv2 Year

iTunes MP4 ©day

ASF/Windows Media WM/Year

RIFF INFO ICRD

19.2.22 Director

Internal Name director

ID3v2 TXXX:DIRECTOR

Vorbis DIRECTOR

APEv2 Director

iTunes MP4 ©dir [9]

ASF/Windows Media WM/Director

RIFF INFO n/a

19.2.23 Disc Number

Internal Name discnumber

ID3v2 TPOS

Vorbis DISCNUMBER

APEv2 Disc

iTunes MP4 disk

ASF/Windows Media WM/PartOfSet

RIFF INFO n/a

19.2. Appendix B: Tag Mapping 275

MusicBrainz Picard, Release v2.12

19.2.24 Disc Subtitle

Internal Name discsubtitle

ID3v2 TSST (ID3v2.4 only)

Vorbis DISCSUBTITLE

APEv2 DiscSubtitle

iTunes MP4 ----:com.apple.iTunes:DISCSUBTITLE

ASF/Windows Media WM/SetSubTitle

RIFF INFO n/a

19.2.25 Encoded By [4]

Internal Name encodedby

ID3v2 TENC

Vorbis ENCODEDBY

APEv2 EncodedBy

iTunes MP4 ©too

ASF/Windows Media WM/EncodedBy

RIFF INFO IENC

19.2.26 Encoder Settings [4]

Internal Name encodersettings

ID3v2 TSSE

Vorbis ENCODERSETTINGS

APEv2 EncoderSettings

iTunes MP4 n/a

ASF/Windows Media WM/EncodingSettings (Picard>=1.3.1)

RIFF INFO n/a

19.2.27 Engineer

Internal Name engineer

ID3v2 TIPL:engineer (ID3v2.4) IPLS:engineer (ID3v2.3)

Vorbis ENGINEER

APEv2 Engineer

iTunes MP4 ----:com.apple.iTunes:ENGINEER

ASF/Windows Media WM/Engineer

RIFF INFO IENG

276 Chapter 19. Appendices

MusicBrainz Picard, Release v2.12

19.2.28 Gapless Playback [4]

Internal Name gapless

ID3v2 n/a

Vorbis n/a

APEv2 n/a

iTunes MP4 pgap

ASF/Windows Media n/a

RIFF INFO n/a

19.2.29 Genre

Internal Name genre

ID3v2 TCON

Vorbis GENRE

APEv2 Genre

iTunes MP4 ©gen

ASF/Windows Media WM/Genre

RIFF INFO IGNR

19.2.30 Grouping [3]

Internal Name grouping

ID3v2 TIT1 GRP1 [8]

Vorbis GROUPING

APEv2 Grouping

iTunes MP4 ©grp

ASF/Windows Media WM/ContentGroupDescription

RIFF INFO n/a

19.2.31 Initial Key

Internal Name key (Picard>=1.4)

ID3v2 TKEY

Vorbis KEY

APEv2 KEY

iTunes MP4 ----:com.apple.iTunes:initialkey

ASF/Windows Media WM/InitialKey

RIFF INFO n/a

19.2. Appendix B: Tag Mapping 277

MusicBrainz Picard, Release v2.12

19.2.32 ISRC

Internal Name isrc

ID3v2 TSRC

Vorbis ISRC

APEv2 ISRC

iTunes MP4 ----:com.apple.iTunes:ISRC

ASF/Windows Media WM/ISRC

RIFF INFO n/a

19.2.33 Language

Internal Name language

ID3v2 TLAN

Vorbis LANGUAGE

APEv2 Language

iTunes MP4 ----:com.apple.iTunes:LANGUAGE

ASF/Windows Media WM/Language

RIFF INFO ILNG

19.2.34 License [6, 7]

Internal Name license

ID3v2 WCOP (single URL) TXXX:LICENSE (multiple or non-URL)

Vorbis LICENSE

APEv2 LICENSE

iTunes MP4 ----:com.apple.iTunes:LICENSE

ASF/Windows Media n/a

RIFF INFO n/a

19.2.35 Lyricist

Internal Name lyricist

ID3v2 TEXT

Vorbis LYRICIST

APEv2 Lyricist

iTunes MP4 ----:com.apple.iTunes:LYRICIST

ASF/Windows Media WM/Writer

RIFF INFO n/a

278 Chapter 19. Appendices

MusicBrainz Picard, Release v2.12

19.2.36 Lyrics [4]

Internal Name lyrics:description

ID3v2 USLT:description

Vorbis LYRICS

APEv2 Lyrics

iTunes MP4 ©lyr

ASF/Windows Media WM/Lyrics

RIFF INFO n/a

19.2.37 Media

Internal Name media

ID3v2 TMED

Vorbis MEDIA

APEv2 Media

iTunes MP4 ----:com.apple.iTunes:MEDIA

ASF/Windows Media WM/Media

RIFF INFO IMED

19.2.38 Mix-DJ

Internal Name djmixer

ID3v2 TIPL:DJ-mix (ID3v2.4) IPLS:DJ-mix (ID3v2.3)

Vorbis DJMIXER

APEv2 DJMixer

iTunes MP4 ----:com.apple.iTunes:DJMIXER

ASF/Windows Media WM/DJMixer

RIFF INFO n/a

19.2.39 Mixer

Internal Name mixer

ID3v2 TIPL:mix (ID3v2.4) IPLS:mix (ID3v2.3)

Vorbis MIXER

APEv2 Mixer

iTunes MP4 ----:com.apple.iTunes:MIXER

ASF/Windows Media WM/Mixer

RIFF INFO n/a

19.2. Appendix B: Tag Mapping 279

MusicBrainz Picard, Release v2.12

19.2.40 Mood [3]

Internal Name mood

ID3v2 TMOO (ID3v2.4 only)

Vorbis MOOD

APEv2 Mood

iTunes MP4 ----:com.apple.iTunes:MOOD

ASF/Windows Media WM/Mood

RIFF INFO n/a

19.2.41 Movement [4]

Internal Name movement (Picard>=2.1)

ID3v2 MVNM

Vorbis MOVEMENTNAME

APEv2 MOVEMENTNAME

iTunes MP4 ©mvn

ASF/Windows Media n/a

RIFF INFO n/a

19.2.42 Movement Count [4]

Internal Name movementtotal (Picard>=2.1)

ID3v2 MVIN

Vorbis MOVEMENTTOTAL

APEv2 MOVEMENTTOTAL

iTunes MP4 mvc

ASF/Windows Media n/a

RIFF INFO n/a

19.2.43 Movement Number [4]

Internal Name movementnumber (Picard>=2.1)

ID3v2 MVIN

Vorbis MOVEMENT

APEv2 MOVEMENT

iTunes MP4 mvi

ASF/Windows Media n/a

RIFF INFO n/a

280 Chapter 19. Appendices

MusicBrainz Picard, Release v2.12

19.2.44 MusicBrainz Artist ID

Internal Name musicbrainz_artistid

ID3v2 TXXX:MusicBrainz Artist Id

Vorbis MUSICBRAINZ_ARTISTID

APEv2 MUSICBRAINZ_ARTISTID

iTunes MP4 ----:com.apple.iTunes:MusicBrainz Artist Id

ASF/Windows Media MusicBrainz/Artist Id

RIFF INFO n/a

19.2.45 MusicBrainz Disc ID

Internal Name musicbrainz_discid

ID3v2 TXXX:MusicBrainz Disc Id

Vorbis MUSICBRAINZ_DISCID

APEv2 MUSICBRAINZ_DISCID

iTunes MP4 ----:com.apple.iTunes:MusicBrainz Disc Id

ASF/Windows Media MusicBrainz/Disc Id

RIFF INFO n/a

19.2.46 MusicBrainz Original Artist ID

Internal Name musicbrainz_originalartistid

ID3v2 TXXX:MusicBrainz Original Artist Id

Vorbis MUSICBRAINZ_ORIGINALARTISTID

APEv2 n/a

iTunes MP4 ----:com.apple.iTunes:MusicBrainz Original Artist

Id (Picard>=2.1)

ASF/Windows Media MusicBrainz/Original Artist Id (Picard>=2.1)

RIFF INFO n/a

19.2.47 MusicBrainz Original Release ID

Internal Name musicbrainz_originalalbumid

ID3v2 TXXX:MusicBrainz Original Album Id

Vorbis MUSICBRAINZ_ORIGINALALBUMID

APEv2 n/a

iTunes MP4 ----:com.apple.iTunes:MusicBrainz Original Album

Id (Picard>=2.1)

ASF/Windows Media MusicBrainz/Original Album Id (Picard>=2.1)

RIFF INFO n/a

19.2. Appendix B: Tag Mapping 281

MusicBrainz Picard, Release v2.12

19.2.48 MusicBrainz Recording ID

Internal Name musicbrainz_recordingid

ID3v2 UFID:http://musicbrainz.org

Vorbis MUSICBRAINZ_TRACKID

APEv2 MUSICBRAINZ_TRACKID

iTunes MP4 ----:com.apple.iTunes:MusicBrainz Track Id

ASF/Windows Media MusicBrainz/Track Id

RIFF INFO n/a

19.2.49 MusicBrainz Release Artist ID

Internal Name musicbrainz_albumartistid

ID3v2 TXXX:MusicBrainz Album Artist Id

Vorbis MUSICBRAINZ_ALBUMARTISTID

APEv2 MUSICBRAINZ_ALBUMARTISTID

iTunes MP4 ----:com.apple.iTunes:MusicBrainz Album Artist Id

ASF/Windows Media MusicBrainz/Album Artist Id

RIFF INFO n/a

19.2.50 MusicBrainz Release Group ID

Internal Name musicbrainz_releasegroupid

ID3v2 TXXX:MusicBrainz Release Group Id

Vorbis MUSICBRAINZ_RELEASEGROUPID

APEv2 MUSICBRAINZ_RELEASEGROUPID

iTunes MP4 ----:com.apple.iTunes:MusicBrainz Release Group Id

ASF/Windows Media MusicBrainz/Release Group Id

RIFF INFO n/a

19.2.51 MusicBrainz Release ID

Internal Name musicbrainz_albumid

ID3v2 TXXX:MusicBrainz Album Id

Vorbis MUSICBRAINZ_ALBUMID

APEv2 MUSICBRAINZ_ALBUMID

iTunes MP4 ----:com.apple.iTunes:MusicBrainz Album Id

ASF/Windows Media MusicBrainz/Album Id

RIFF INFO n/a

282 Chapter 19. Appendices

MusicBrainz Picard, Release v2.12

19.2.52 MusicBrainz Track ID

Internal Name musicbrainz_trackid

ID3v2 TXXX:MusicBrainz Release Track Id

Vorbis MUSICBRAINZ_RELEASETRACKID

APEv2 MUSICBRAINZ_RELEASETRACKID

iTunes MP4 ----:com.apple.iTunes:MusicBrainz Release Track Id

ASF/Windows Media MusicBrainz/Release Track Id

RIFF INFO n/a

19.2.53 MusicBrainz TRM ID

Internal Name musicbrainz_trmid (deprecated)

ID3v2 TXXX:MusicBrainz TRM Id

Vorbis MUSICBRAINZ_TRMID

APEv2 MUSICBRAINZ_TRMID

iTunes MP4 ----:com.apple.iTunes:MusicBrainz TRM Id

ASF/Windows Media MusicBrainz/TRM Id

RIFF INFO n/a

19.2.54 MusicBrainz Work ID

Internal Name musicbrainz_workid

ID3v2 TXXX:MusicBrainz Work Id

Vorbis MUSICBRAINZ_WORKID

APEv2 MUSICBRAINZ_WORKID

iTunes MP4 ----:com.apple.iTunes:MusicBrainz Work Id

ASF/Windows Media MusicBrainz/Work Id

RIFF INFO n/a

19.2.55 MusicIP Fingerprint

Internal Name musicip_fingerprint

ID3v2 TXXX:MusicMagic Fingerprint

Vorbis FINGERPRINT=MusicMagic Fingerprint {fingerprint}

APEv2 n/a

iTunes MP4 ----:com.apple.iTunes:fingerprint

ASF/Windows Media n/a

RIFF INFO n/a

19.2. Appendix B: Tag Mapping 283

MusicBrainz Picard, Release v2.12

19.2.56 MusicIP PUID

Internal Name musicip_puid

ID3v2 TXXX:MusicIP PUID

Vorbis MUSICIP_PUID

APEv2 MUSICIP_PUID

iTunes MP4 ----:com.apple.iTunes:MusicIP PUID

ASF/Windows Media MusicIP/PUID

RIFF INFO n/a

19.2.57 Original Album

Internal Name originalalbum

ID3v2 TOAL

Vorbis n/a

APEv2 n/a

iTunes MP4 n/a

ASF/Windows Media WM/OriginalAlbumTitle (Picard>=2.1)

RIFF INFO n/a

19.2.58 Original Artist

Internal Name originalartist

ID3v2 TOPE

Vorbis n/a

APEv2 Original Artist (Picard>=2.1)

iTunes MP4 n/a

ASF/Windows Media WM/OriginalArtist (Picard>=2.1)

RIFF INFO n/a

19.2.59 Original Filename

Internal Name originalfilename (Picard>=2.3)

ID3v2 TOFN

Vorbis ORIGINALFILENAME

APEv2 ORIGINALFILENAME

iTunes MP4 n/a

ASF/Windows Media WM/OriginalFilename

RIFF INFO n/a

284 Chapter 19. Appendices

MusicBrainz Picard, Release v2.12

19.2.60 Original Release Date [1]

Internal Name originaldate

ID3v2 TDOR (ID3v2.4) TORY (ID3v2.3)

Vorbis ORIGINALDATE

APEv2 n/a

iTunes MP4 n/a

ASF/Windows Media WM/OriginalReleaseTime (Picard>=1.3.1) WM/

OriginalReleaseYear (Picard<=1.3.0)

RIFF INFO n/a

19.2.61 Original Release Year [1]

Internal Name originalyear

ID3v2 n/a

Vorbis ORIGINALYEAR

APEv2 ORIGINALYEAR

iTunes MP4 n/a

ASF/Windows Media WM/OriginalReleaseYear (Picard>=1.3.1)

RIFF INFO n/a

19.2.62 Performer

Internal Name performer:instrument

ID3v2 TMCL:instrument (ID3v2.4) IPLS:instrument (ID3v2.3)

Vorbis PERFORMER={artist} (instrument)

APEv2 Performer={artist} (instrument)

iTunes MP4 n/a

ASF/Windows Media n/a

RIFF INFO n/a

See also:

Please refer to Relationship Types / Artist-Release / Performer , Relationship Types /

Artist-Release / Vocal , Relationship Types / Artist-Release / Instrument , Relationship

Types / Artist-Recording / Performer , Relationship Types / Artist-Recording / Vocal , and

Relationship Types / Artist-Recording / Instrument for more information.

19.2. Appendix B: Tag Mapping 285

https://musicbrainz.org/relationship/888a2320-52e4-4fe8-a8a0-7a4c8dfde167
https://musicbrainz.org/relationship/eb10f8a0-0f4c-4dce-aa47-87bcb2bc42f3
https://musicbrainz.org/relationship/eb10f8a0-0f4c-4dce-aa47-87bcb2bc42f3
https://musicbrainz.org/relationship/67555849-61e5-455b-96e3-29733f0115f5
https://musicbrainz.org/relationship/628a9658-f54c-4142-b0c0-95f031b544da
https://musicbrainz.org/relationship/628a9658-f54c-4142-b0c0-95f031b544da
https://musicbrainz.org/relationship/0fdbe3c6-7700-4a31-ae54-b53f06ae1cfa
https://musicbrainz.org/relationship/59054b12-01ac-43ee-a618-285fd397e461

MusicBrainz Picard, Release v2.12

19.2.63 Podcast [4]

Internal Name podcast

ID3v2 n/a

Vorbis n/a

APEv2 n/a

iTunes MP4 pcst

ASF/Windows Media n/a

RIFF INFO n/a

19.2.64 Podcast URL [4]

Internal Name podcasturl

ID3v2 n/a

Vorbis n/a

APEv2 n/a

iTunes MP4 purl

ASF/Windows Media n/a

RIFF INFO n/a

19.2.65 Producer

Internal Name producer

ID3v2 TIPL:producer (ID3v2.4) IPLS:producer (ID3v2.3)

Vorbis PRODUCER

APEv2 Producer

iTunes MP4 ----:com.apple.iTunes:PRODUCER

ASF/Windows Media WM/Producer

RIFF INFO IPRO

19.2.66 Rating

Internal Name _rating

ID3v2 POPM

Vorbis RATING:user@email

APEv2 n/a

iTunes MP4 n/a

ASF/Windows Media WM/SharedUserRating

RIFF INFO n/a

286 Chapter 19. Appendices

MusicBrainz Picard, Release v2.12

19.2.67 Record Label

Internal Name label

ID3v2 TPUB

Vorbis LABEL

APEv2 Label

iTunes MP4 ----:com.apple.iTunes:LABEL

ASF/Windows Media WM/Publisher

RIFF INFO n/a

19.2.68 Release Country

Internal Name releasecountry

ID3v2 TXXX:MusicBrainz Album Release Country

Vorbis RELEASECOUNTRY

APEv2 RELEASECOUNTRY

iTunes MP4 ----:com.apple.iTunes:MusicBrainz Album Release

Country

ASF/Windows Media MusicBrainz/Album Release Country

RIFF INFO ICNT

19.2.69 Release Date [10]

Internal Name releasedate (since Picard 2.9, not filled by default)

ID3v2 TDRL (ID3v2.4) TXXX:RELEASEDATE (ID3v2.3)

Vorbis RELEASEDATE

APEv2 RELEASEDATE

iTunes MP4 ----:com.apple.iTunes:RELEASEDATE

ASF/Windows Media n/a

RIFF INFO n/a

19.2.70 Release Status

Internal Name releasestatus

ID3v2 TXXX:MusicBrainz Album Status

Vorbis RELEASESTATUS

APEv2 MUSICBRAINZ_ALBUMSTATUS

iTunes MP4 ----:com.apple.iTunes:MusicBrainz Album Status

ASF/Windows Media MusicBrainz/Album Status

RIFF INFO n/a

19.2. Appendix B: Tag Mapping 287

MusicBrainz Picard, Release v2.12

19.2.71 Release Type

Internal Name releasetype

ID3v2 TXXX:MusicBrainz Album Type

Vorbis RELEASETYPE

APEv2 MUSICBRAINZ_ALBUMTYPE

iTunes MP4 ----:com.apple.iTunes:MusicBrainz Album Type

ASF/Windows Media MusicBrainz/Album Type

RIFF INFO n/a

19.2.72 Remixer

Internal Name remixer

ID3v2 TPE4

Vorbis REMIXER

APEv2 MixArtist

iTunes MP4 ----:com.apple.iTunes:REMIXER

ASF/Windows Media WM/ModifiedBy

RIFF INFO n/a

19.2.73 ReplayGain Album Gain

Internal Name replaygain_album_gain (Picard>=2.2)

ID3v2 TXXX:REPLAYGAIN_ALBUM_GAIN

Vorbis REPLAYGAIN_ALBUM_GAIN

APEv2 REPLAYGAIN_ALBUM_GAIN

iTunes MP4 ----:com.apple.iTunes:REPLAYGAIN_ALBUM_GAIN

ASF/Windows Media REPLAYGAIN_ALBUM_GAIN

RIFF INFO n/a

19.2.74 ReplayGain Album Peak

Internal Name replaygain_album_peak (Picard>=2.2)

ID3v2 TXXX:REPLAYGAIN_ALBUM_PEAK

Vorbis REPLAYGAIN_ALBUM_PEAK

APEv2 REPLAYGAIN_ALBUM_PEAK

iTunes MP4 ----:com.apple.iTunes:REPLAYGAIN_ALBUM_PEAK

ASF/Windows Media REPLAYGAIN_ALBUM_PEAK

RIFF INFO n/a

288 Chapter 19. Appendices

MusicBrainz Picard, Release v2.12

19.2.75 ReplayGain Album Range

Internal Name replaygain_album_range (Picard>=2.2)

ID3v2 TXXX:REPLAYGAIN_ALBUM_RANGE

Vorbis REPLAYGAIN_ALBUM_RANGE

APEv2 REPLAYGAIN_ALBUM_RANGE

iTunes MP4 ----:com.apple.iTunes:REPLAYGAIN_ALBUM_RANGE

ASF/Windows Media REPLAYGAIN_ALBUM_RANGE

RIFF INFO n/a

19.2.76 ReplayGain Reference Loudness

Internal Name replaygain_reference_loudness (Picard>=2.2)

ID3v2 TXXX:REPLAYGAIN_REFERENCE_LOUDNESS

Vorbis REPLAYGAIN_REFERENCE_LOUDNESS

APEv2 REPLAYGAIN_REFERENCE_LOUDNESS

iTunes MP4 ----:com.apple.iTunes:REPLAYGAIN_REFERENCE_LOUDNESS

ASF/Windows Media REPLAYGAIN_REFERENCE_LOUDNESS

RIFF INFO n/a

19.2.77 ReplayGain Track Gain

Internal Name replaygain_track_gain (Picard>=2.2)

ID3v2 TXXX:REPLAYGAIN_TRACK_GAIN

Vorbis REPLAYGAIN_TRACK_GAIN

APEv2 REPLAYGAIN_TRACK_GAIN

iTunes MP4 ----:com.apple.iTunes:REPLAYGAIN_TRACK_GAIN

ASF/Windows Media REPLAYGAIN_TRACK_GAIN

RIFF INFO n/a

19.2.78 ReplayGain Track Peak

Internal Name replaygain_track_peak (Picard>=2.2)

ID3v2 TXXX:REPLAYGAIN_TRACK_PEAK

Vorbis REPLAYGAIN_TRACK_PEAK

APEv2 REPLAYGAIN_TRACK_PEAK

iTunes MP4 ----:com.apple.iTunes:REPLAYGAIN_TRACK_PEAK

ASF/Windows Media REPLAYGAIN_TRACK_PEAK

RIFF INFO n/a

19.2. Appendix B: Tag Mapping 289

MusicBrainz Picard, Release v2.12

19.2.79 ReplayGain Track Range

Internal Name replaygain_track_range (Picard>=2.2)

ID3v2 TXXX:REPLAYGAIN_TRACK_RANGE

Vorbis REPLAYGAIN_TRACK_RANGE

APEv2 REPLAYGAIN_TRACK_RANGE

iTunes MP4 ----:com.apple.iTunes:REPLAYGAIN_TRACK_RANGE

ASF/Windows Media REPLAYGAIN_TRACK_RANGE

RIFF INFO n/a

19.2.80 Script

Internal Name script

ID3v2 TXXX:SCRIPT

Vorbis SCRIPT

APEv2 Script

iTunes MP4 ----:com.apple.iTunes:SCRIPT

ASF/Windows Media WM/Script

RIFF INFO n/a

19.2.81 Show Name [4]

Internal Name show

ID3v2 n/a

Vorbis n/a

APEv2 n/a

iTunes MP4 tvsh

ASF/Windows Media n/a

RIFF INFO n/a

19.2.82 Show Name Sort Order [4]

Internal Name showsort

ID3v2 n/a

Vorbis n/a

APEv2 n/a

iTunes MP4 sosn

ASF/Windows Media n/a

RIFF INFO n/a

290 Chapter 19. Appendices

MusicBrainz Picard, Release v2.12

19.2.83 Show Work & Movement [4]

Internal Name showmovement (Picard>=2.1)

ID3v2 TXXX:SHOWMOVEMENT

Vorbis SHOWMOVEMENT

APEv2 SHOWMOVEMENT

iTunes MP4 shwm

ASF/Windows Media n/a

RIFF INFO n/a

19.2.84 Subtitle [4]

Internal Name subtitle

ID3v2 TIT3

Vorbis SUBTITLE

APEv2 Subtitle

iTunes MP4 ----:com.apple.iTunes:SUBTITLE

ASF/Windows Media WM/SubTitle

RIFF INFO n/a

19.2.85 Total Discs

Internal Name totaldiscs

ID3v2 TPOS

Vorbis DISCTOTAL and TOTALDISCS

APEv2 Disc

iTunes MP4 disk

ASF/Windows Media WM/PartOfSet (Picard>=1.3.1)

RIFF INFO n/a

19.2.86 Total Tracks

Internal Name totaltracks

ID3v2 TRCK

Vorbis TRACKTOTAL and TOTALTRACKS

APEv2 Track

iTunes MP4 trkn

ASF/Windows Media n/a

RIFF INFO n/a

19.2. Appendix B: Tag Mapping 291

MusicBrainz Picard, Release v2.12

19.2.87 Track Number

Internal Name tracknumber

ID3v2 TRCK

Vorbis TRACKNUMBER

APEv2 Track

iTunes MP4 trkn

ASF/Windows Media WM/TrackNumber

RIFF INFO ITRK

19.2.88 Track Title

Internal Name title

ID3v2 TIT2

Vorbis TITLE

APEv2 Title

iTunes MP4 ©nam

ASF/Windows Media Title

RIFF INFO INAM

19.2.89 Track Title Sort Order [4]

Internal Name titlesort

ID3v2 TSOT

Vorbis TITLESORT

APEv2 TITLESORT

iTunes MP4 sonm

ASF/Windows Media WM/TitleSortOrder

RIFF INFO n/a

19.2.90 Website (official artist website)

Internal Name website

ID3v2 WOAR

Vorbis WEBSITE

APEv2 Weblink

iTunes MP4 n/a

ASF/Windows Media WM/AuthorURL (Picard>=1.3.1)

RIFF INFO n/a

292 Chapter 19. Appendices

MusicBrainz Picard, Release v2.12

19.2.91 Work Title

Internal Name work (Picard>=1.3)

ID3v2 TXXX:WORK TIT1 [8]

Vorbis WORK

APEv2 WORK

iTunes MP4 ©wrk (Picard>=2.1)

ASF/Windows Media WM/Work

RIFF INFO n/a

19.2.92 Writer [2]

Internal Name writer

ID3v2 TXXX:Writer (Picard>=1.3)

Vorbis WRITER

APEv2 Writer

iTunes MP4 n/a

ASF/Windows Media n/a

RIFF INFO IWRI

Notes:

1. Taken from the earliest release in the release group.

2. Used when uncertain whether composer or lyricist.

3. This is populated by LastFMPlus plugin and not by stock Picard.

4. This is not able to be populated by stock Picard. It may be used and populated

by certain plugins.

5. For Picard>=1.3 this indicates a Various Artists album; for Picard<=1.2 this indi-

cates albums with tracks by different artists which is incorrect (e.g.: an original

album with a duet with a feat. artist would show as a Compilation). In neither

case does this indicate a MusicBrainz Release Group subtype of compilation.

6. Release-level license relationship type.

7. Recording-level license relationship type.

8. With “Save iTunes compatible grouping and work” (since Picard>=2.1.0)

9. From iTunes Metadata Format Specification

10. For compatibility reasons the date tag gets filled with the release date fromMusic-

Brainz. This is howmost software interprets this tag. Since Picard 2.9 the separate

releasedate exists for use by scripts and plugins, but is not filled by default.

19.2. Appendix B: Tag Mapping 293

https://musicbrainz.org/relationship/004bd0c3-8a45-4309-ba52-fa99f3aa3d50
https://musicbrainz.org/relationship/f25e301d-b87b-4561-86a0-5d2df6d26c0a

MusicBrainz Picard, Release v2.12

19.3 Appendix C: Command Line Options

Picard can be started from the command line with the following arguments:

run_picard.py [-h] [-a AUDIT] [-c CONFIG_FILE] [-d] [-e COMMAND␣

→˓[COMMAND ...]] [-M] [-N] [-P] [--no-crash-dialog] [-s] [-v] [-V]␣

→˓[FILE_OR_URL ...]

where the options are:

-h, --help

show a help message and exit

-a AUDIT, --audit AUDIT

audit events passed as a comma-separated list, prefixes supported, use “all” to

match any event. See the Python Documentation for more information.

-c CONFIG_FILE, --config-file CONFIG_FILE

location of the configuration file to use

-d, --debug

enable debug-level logging

-e COMMAND, --exec COMMAND

execute one or more COMMANDs at start-up (see Executable Commands for more

information)

-M, --no-player

disable built-in media player

-N, --no-restore

do not restore window positions or sizes

-P, --no-plugins

do not load any plugins

--no-crash-dialog

disable the crash dialog

-s, --stand-alone-instance

force Picard to create a new, stand-alone instance

-v, --version

display the version information and exit

-V, --long-version

display the long version information and exit

FILE_OR_URL

one or more files, directories, URLs and MBIDs to load

294 Chapter 19. Appendices

https://docs.python.org/3/library/audit_events.html#audit-events

MusicBrainz Picard, Release v2.12

Note: Files and directories are specified including the path (either absolute or

relative) to the file or directory, andmay include drive specifiers. They can also be

specified using the file:// prefix. URLs are specified by using either the http:/

/ or https:// prefix. MBIDs are specified in the format mbid://<entity_type>/

<mbid> where <entity_type> is one of “release”, “artist” or “track” and <mbid>

is the MusicBrainz Identifier of the entity.

If a specified item contains a space, it must be enclosed in quotes such as "/

home/user/music/my song.mp3".

19.3. Appendix C: Command Line Options 295

MusicBrainz Picard, Release v2.12

19.4 Appendix D: Keyboard Shortcuts

In addition to the standard keyboard shortcuts provided by your operating system for

things like text selection, copy and paste, Picard also provides the following:

19.4.1 Main window

File

Action Windows / Linux macOS

Add folder Ctrl+E ⌘+E

Add files Ctrl+O ⌘+O

Save selected files Ctrl+S ⌘+S

Quit Picard Ctrl+Q ⌘+Q

Edit

Action Windows / Linux macOS

Cut selected files Ctrl+X ⌘+X

Paste selected files Ctrl+V ⌘+V

Show info for selected item Ctrl+I ⌘+I

View

Action Windows / Linux macOS

Toggle file browser Ctrl+B ⌘+B

Toggle metadata view Ctrl+Shift+M ⌘+⇧+M

Options

Action Windows / Linux macOS

Open file naming script editor Ctrl+Shift+S ⌘+⇧+S

Open profile editor Ctrl+Shift+P ⌘+⇧+P

296 Chapter 19. Appendices

MusicBrainz Picard, Release v2.12

Tools

Action Windows / Linux macOS

Refresh Ctrl+R ⌘+R

Lookup CD Ctrl+K ⌘+K

Lookup Ctrl+L ⌘+L

Scan Ctrl+Y ⌘+Y

Cluster Ctrl+U ⌘+U

Lookup in browser Ctrl+Shift+L ⌘+⇧+L

Search for similar albums / tracks Ctrl+T ⌘+T

Show other album versions Ctrl+Shift+O ⌘+⇧+O

Generate AcoustID fingerprints Ctrl+Shift+Y ⌘+⇧+Y

Tags from file names Ctrl+Shift+T ⌘+⇧+T

Help

Action Windows / Linux macOS

Help F1 ⌘+?

View activity history Ctrl+H ⌘+⇧+H

View error/debug log Ctrl+G ⌘+G

Metadata view

Action Windows / Linux macOS

Add new tag Alt+Shift+A ⌥+⇧+A

Edit selected tag Alt+Shift+E ⌥+⇧+E

Remove selected tag Alt+Shift+R

Del

⌥+⇧+R

Del

⌘+⌫

Copy selected tag value Ctrl+C ⌘+C

Paste to selected tag value Ctrl+V ⌘+V

Other

Action Windows / Linux macOS

Focus search Ctrl+F ⌘+F

Remove selected item Del Del

⌘+⌫

19.4. Appendix D: Keyboard Shortcuts 297

MusicBrainz Picard, Release v2.12

19.4.2 Script editor

Action Windows / Linux macOS

Show auto completion Ctrl+Space ⌃+Space

Use selected completion Tab

Return

Tab

Return

Hide completions Esc Esc

19.4.3 File naming script editor

Action Windows / Linux macOS

Show auto completion Ctrl+Space ⌃+Space

Use selected completion Tab

Return

Tab

Return

Hide completions Esc Esc

Edit script metadata Ctrl+M ⌘+M

Word wrap on/off Ctrl+Shift+W ⌘+⇧+W

Show/hide help tooltips Ctrl+Shift+T ⌘+⇧+T

Show/hide documentation Ctrl+H ⌘+H

Help (in browser) F1 ⌘+?

298 Chapter 19. Appendices

INDEX

Symbols
-M

command line option, 294

-N

command line option, 294

-P

command line option, 294

-V

command line option, 294

--audit

command line option, 294

--config-file

command line option, 294

--debug

command line option, 294

--exec

command line option, 294

--help

command line option, 294

--long-version

command line option, 294

--no-crash-dialog

command line option, 294

--no-player

command line option, 294

--no-plugins

command line option, 294

--no-restore

command line option, 294

--stand-alone-instance

command line option, 294

--version

command line option, 294

-a

command line option, 294

-c

command line option, 294

-d

command line option, 294

-e

command line option, 294

-h

command line option, 294

-s

command line option, 294

-v

command line option, 294

A
acknowledgements, 4

acoustic

fingerprint, 241

acoustic fingerprint, 6, 236

submitting, 179, 181, 182, 188

AcoustID, 6

automatic scan, 25

submitting, 188

usage, 241

album

load error, 230

albumartist, 6

android

app, 250

api

plugins, 263

artist, 6

artist credit, 7

audio player, 235

automatic clustering

cluster, 25

automatic scan

AcoustID, 25

B
batch processing, 207

299

MusicBrainz Picard, Release v2.12

browser

configuration, 237

C
CAA, see cover art archive

cluster

automatic clustering, 25

lookup, 162

submitting, 196

command line

options, 294

command line option

-M, 294

-N, 294

-P, 294

-V, 294

--audit, 294

--config-file, 294

--debug, 294

--exec, 294

--help, 294

--long-version, 294

--no-crash-dialog, 294

--no-player, 294

--no-plugins, 294

--no-restore, 294

--stand-alone-instance, 294

--version, 294

-a, 294

-c, 294

-d, 294

-e, 294

-h, 294

-s, 294

-v, 294

command processing, 207

commands

executable, 209

configuration

aac tag options, 40

ac3 tag options, 41

action options, 23

advanced options, 74

before tagging, 37

browser, 237

cd lookup, 58

colors, 67

config file location, 236

cover art, 43

cover art archive, 46

cover art location, 44

cover art providers, 45

file, 236

file naming, 49

file naming compatibility, 55

fingerprinting, 57

general options, 24

genres, 34

id3 tag options, 38

local files, 47

maintenance, 79

matching preferences, 77

metadata options, 29

network, 76

plugin update checking, 26

plugins, 60

profiles, 27

program update checking, 26

ratings, 36

release preferences, 32

screen setup, 22

scripting, 72

tag options, 37

toolbar, 70

top tags, 68

user interface, 64

wave tag options, 42

context menu actions

plugins, 268

contributing, 3

cover art

configuration, 43

location to save, 44

setting, 174

cover art archive, 7

configuration, 46

D
dBpoweramp

lookup log, 180

disc id, 7

attaching, 185

E
EAC

lookup log, 180

300 Index

MusicBrainz Picard, Release v2.12

error

couldn't load album, 230

event hooks

plugins, 265

executable commands, 209

CLEAR_LOGS, 209

CLUSTER, 209

FINGERPRINT, 209

FROM_FILE, 209

LOAD, 211

LOOKUP, 211

LOOKUP_CD, 211

PAUSE, 212

QUIT, 212

REMOVE, 212

REMOVE_ALL, 212

REMOVE_EMPTY, 213

REMOVE_SAVED, 213

REMOVE_UNCLUSTERED, 213

SAVE_MATCHED, 213

SAVE_MODIFIED, 213

SCAN, 214

SHOW, 214

SUBMIT_FINGERPRINTS, 214

WRITE_LOGS, 214

F
file format

plugins, 267

file formats, 232

file naming

configuration, 49

script editor, 52

scripts, 216

file naming compatibility

configuration, 55

file naming script, 238

files

saving, 176

fingerprint

acoustic, 6, 236, 241

submitting, 188

flatpak

install, 10

fre:ac

lookup log, 180

G
glossary, 6

I
icon

tagger, 230

icons

album, 19

release, 19

status, 19

status bar, 21

track, 20

identifier

musicbrainz, 81, 87, 90, 93

install

download, 10

flatpak, 10

Linux package, 11

snap, 11

itunes, 236

tags, 236

L
limitations, 2

Linux package

install, 11

lookup

cd, 158

cluster, 162

ripper log, 158, 180

lookup files, 161

lookup in browser, 166

M
macos

app damaged, 231

network folders, 231

mapping

tags, 270

matching files to tracks, 172

mbid, see MusicBrainz Identifier, 81, 87,

90, 93

medium, 7

multiple release countries, 243

MusicBrainz Identifier, 7

Index 301

MusicBrainz Picard, Release v2.12

N
non-album track, see standalone record-

ing

O
option settings, see configuration

options

command line, 294

P
plugin

writing, 245

plugin update checking

configuration, 26

plugins, 215

api, 263

configuration, 60

context menu actions, 268

event hooks, 265

file format, 267

installing, 63

metadata, 263

metadata processors, 264

programming, 263

scripting functions, 267

third party, 61

types, 215

processing

batch, 207

processing order, 220

profiles

option, 27

program update checking

configuration, 26

programming

plugins, 263

R
rate limiting, 2

recording, 8

standalone, 8

release, 8

deleted, 231

load error, 230

submitting, 196

release countries

multiple, 243

release group, 8

S
saving files, 176

scan files, 164

script

file naming, 238

script editor

file naming, 52

scripting

functions, 103

scripting functions

assignment, 103

conditional, 132

information, 146

loop, 155

mathematical, 129

miscellaneous, 156

multi-value, 120

plugins, 267

text, 107

scripts, 101, 216

file naming, 52, 216

syntax, 101

tagging, 72, 217

tags, 81

variables, 81

snap

install, 11

standalone recording, 8

starting, 12

status bar, 21

T
tagger icon, 230

tagging

itunes, 236

scripts, 217

tags

advanced, 87

basic, 81

classical, 96

editing, 234

genre, 90

mapping, 270

plugins, 96

truncated, 237

writing, 100

tags from file names, 193

track, 8

302 Index

MusicBrainz Picard, Release v2.12

troubleshooting

files not saved, 228

general, 222

get debug log, 223

getting log for crashes, 223

macOS shows app is damaged, 229

no cover art displayed, 227

no cover art downloaded, 226

program freezes, 228

program won't start, 225

reporting a bug, 222

tags not saved, 227

U
user interface

colors, 67

configuration, 64

keyboard shortcuts, 296

main screen, 13

toolbar, 70

V
variables

advanced, 93

basic, 90

file, 92

W
Whipper

lookup log, 180

WMP

tags, 237

work, 9

workflows

cd, 178

files grouped by album, 181

files not grouped, 182

general, 178

no metadata, 183

ripper log, 180

X
XLD

lookup log, 180

Index 303

	Introduction
	Picard Can…
	Picard Cannot…
	Limitations

	Contributing to the Project
	Acknowledgements
	Glossary of Terms
	Getting Started
	Download & Install Picard
	Installing Picard on Linux
	Installing with Flatpak
	Installing with Snap
	Installing from your distribution’s package repository

	Starting Picard
	Main Screen
	Status Icons
	Album / Release Icons
	Track Icons
	Status Bar

	Configuration
	Screen Setup
	Action Options
	Option Settings
	General Options
	Profile Options
	Metadata Options
	Preferred Releases
	Genres
	Ratings

	Tag Options
	Before Tagging
	ID3 Files
	AAC Files
	AC3 Files
	WAVE Files

	Cover Art Options
	Location
	Cover Art Providers
	Cover Art Archive
	Local Files

	File Naming Options
	File Naming Script Editor
	File Naming Compatibility Options

	Fingerprinting Options
	CD Lookup Options
	Windows
	macOS
	Linux
	Other platforms

	Plugins Options
	Plugins List
	Installing Third-Party Plugins

	User Interface Options
	Colors
	Top Tags
	Toolbar

	Scripting Options
	Advanced Options
	Network
	Matching
	Maintenance

	Tags & Variables
	Basic Tags
	Tags Provided from MusicBrainz Data
	Tags Not Provided from MusicBrainz Data
	iTunes-Specific Tags

	Advanced Tags
	Track Relationship Tags
	Genre Tags

	Basic Variables
	File Variables
	Advanced Variables
	Release Relationship Variables
	Track Relationship Variables

	Classical Music Tags
	Tags from Plugins
	Last.fm Plugin
	Additional Artists Variables Plugin

	Other Information

	Scripting
	Syntax
	Metadata Variables

	Scripting Functions
	Assignment Functions
	$copy
	$copymerge
	$delete
	$set
	$setmulti
	$unset

	Text Functions
	$delprefix
	$find
	$firstalphachar
	$firstwords
	$get
	$initials
	$left
	$len
	$lower
	$num
	$pad
	$replace
	$reverse
	$right
	$rreplace
	$rsearch
	$strip
	$substr
	$swapprefix
	$title
	$trim
	$truncate
	$upper

	Multi-Value Functions
	$cleanmulti
	$getmulti
	$join
	$lenmulti
	$map
	$performer
	$replacemulti
	$reversemulti
	$slice
	$sortmulti
	$unique

	Mathematical Functions
	$add
	$div
	$mod
	$mul
	$sub

	Conditional Functions
	$and
	$endswith
	$eq
	$eq_all
	$eq_any
	$gt
	$gte
	$if
	$if2
	$in
	$inmulti
	$is_audio
	$is_complete
	$is_multi
	$is_video
	$lt
	$lte
	$ne
	$ne_all
	$ne_any
	$not
	$or
	$startswith

	Information Functions
	$countryname
	$dateformat
	$datetime
	$day
	$matchedtracks
	$max
	$min
	$month
	$year

	Loop Functions
	$foreach
	$while

	Miscellaneous Functions
	$noop

	Using Picard
	Retrieving Album Information
	Lookup CD or Ripper Log
	Lookup Files
	Scan Files
	Lookup in Browser
	Manual Lookup

	Matching Files to Tracks
	Setting the Cover Art
	Saving Updated Files

	Work Flow Recommendations
	When the CD is available
	When the ripper log file is available
	When files are grouped by album
	When files are not grouped but have some metadata
	When files are not grouped and have little or no existing metadata

	Other Picard Tasks
	Attaching a Disc ID to a Release
	Submitting Acoustic Fingerprints
	Submitting when using Scan to identify the release
	Submitting when not using Scan to identify the release

	Generating tags from file names
	Basic usage
	Matching folders
	Replace underscores with spaces
	Ignoring parts of the file name

	Submitting Cluster as a Release
	Submitting multiple tracks as a cluster
	Submitting a single track

	Option Profiles
	How Option Profiles Work
	Example of Using Profiles
	Managing Option Profiles
	Saving Profile Option Settings

	Command and Batch Processing
	Executable Commands
	CLEAR_LOGS
	CLUSTER
	FINGERPRINT
	FROM_FILE
	LOAD
	LOOKUP
	LOOKUP_CD
	PAUSE
	QUIT
	REMOVE
	REMOVE_ALL
	REMOVE_EMPTY
	REMOVE_SAVED
	REMOVE_UNCLUSTERED
	SAVE_MATCHED
	SAVE_MODIFIED
	SCAN
	SHOW
	SUBMIT_FINGERPRINTS
	WRITE_LOGS

	Extending Picard
	Plugins
	Scripts
	File Naming Script
	Tagging Scripts
	Tagging Script Examples
	Move disambiguation to album title
	Release language as language
	Use original release date
	Set album sort name
	Set compilation for multi artist releases
	Remove featuring from album artist
	Move featuring from artist to title
	Preserve original filename

	Processing Order
	Startup
	Loading a Release
	Loading Music Files
	Adding / Removing Files
	Saving Files
	Removing Albums
	Context Menus

	Troubleshooting
	General Troubleshooting
	Getting Help
	Reporting a Bug
	Getting a Debug Log
	Getting Logs in Case of Crashes
	Windows Systems
	macOS Systems
	Linux Systems

	Picard won’t start
	There is no coverart
	Picard isn’t finding and downloading any cover art
	Coverart that is saved with the files isn’t displayed

	Tags are not updated or saved
	Files are not being saved
	Picard just stopped working
	macOS shows the app is damaged

	Frequently Asked Questions
	Using Picard
	How do I tag files with Picard?
	The green “Tagger” icon disappeared from MusicBrainz.org, how do I get it back?
	I’m trying to load a release in Picard, but all I’m seeing is “Couldn’t load album errors”. What’s up?
	I’m using macOS, where are my network folders or drives?
	macOS shows the app is damaged. How can I run Picard?
	Picard is installed on Linux as a Snap, how can I access removable media?
	On Windows, how do I solve errors on saving to cloud storage drives mounted with rclone?

	File Formats
	What formats does Picard support?
	What formats will Picard support?
	What rippers are supported for looking up from logs?
	Which tags can Picard write to my files?
	How do I edit tags in several files at once?
	Why is saving files sometimes slow, but saving a second time much faster?
	Why does Picard not use Vinyl style track numbers (e.g. A1, A2, …) by default?
	The built-in audio player cannot play my file. Which formats does it support?
	I am using Fedora. Why doesn’t acoustic fingerprinting work?

	Configuration
	Where is the Picard configuration saved?
	I tagged a file in Picard, but iTunes is not seeing the tags!
	My tags are truncated to 30 characters in Windows Media Player!
	How do I tell Picard which browser to use?

	Tutorials
	Writing a File Naming Script
	Understanding Acoustic Fingerprinting and AcoustIDs
	Handling of multiple release countries
	Using preferred release countries
	Using scripting to set a different country
	What’s missing?

	Writing a Plugin
	Loading releases with MusicBrainz for Android
	Configuring Picard
	Installing and configuring the MusicBrainz Android app
	Loading releases by barcode
	Loading releases by search
	Loading releases from the Tagger

	Appendices
	Appendix A: Plugins API
	Plugin Metadata
	Metadata Processors
	Album metadata example:
	Track metadata example:

	Event Hooks
	file_post_load_processor(file)
	file_post_save_processor(file)
	file_post_addition_to_track_processor(track, file)
	file_post_removal_from_track_processor(track, file)
	album_post_removal_processor(album)

	File Formats
	Tagger Script Functions
	Context Menu Actions

	Appendix B: Tag Mapping
	AcoustID
	AcoustID Fingerprint
	Album
	Album Artist
	Album Artist Sort Order
	Album Sort Order [4]
	Arranger
	Artist
	Artist Sort Order
	Artists
	ASIN
	Barcode
	BPM [4]
	Catalog Number
	Comment [4]
	Compilation (iTunes) [5]
	Composer
	Composer Sort Order
	Conductor
	Copyright [4]
	Date [10]
	Director
	Disc Number
	Disc Subtitle
	Encoded By [4]
	Encoder Settings [4]
	Engineer
	Gapless Playback [4]
	Genre
	Grouping [3]
	Initial Key
	ISRC
	Language
	License [6, 7]
	Lyricist
	Lyrics [4]
	Media
	Mix-DJ
	Mixer
	Mood [3]
	Movement [4]
	Movement Count [4]
	Movement Number [4]
	MusicBrainz Artist ID
	MusicBrainz Disc ID
	MusicBrainz Original Artist ID
	MusicBrainz Original Release ID
	MusicBrainz Recording ID
	MusicBrainz Release Artist ID
	MusicBrainz Release Group ID
	MusicBrainz Release ID
	MusicBrainz Track ID
	MusicBrainz TRM ID
	MusicBrainz Work ID
	MusicIP Fingerprint
	MusicIP PUID
	Original Album
	Original Artist
	Original Filename
	Original Release Date [1]
	Original Release Year [1]
	Performer
	Podcast [4]
	Podcast URL [4]
	Producer
	Rating
	Record Label
	Release Country
	Release Date [10]
	Release Status
	Release Type
	Remixer
	ReplayGain Album Gain
	ReplayGain Album Peak
	ReplayGain Album Range
	ReplayGain Reference Loudness
	ReplayGain Track Gain
	ReplayGain Track Peak
	ReplayGain Track Range
	Script
	Show Name [4]
	Show Name Sort Order [4]
	Show Work & Movement [4]
	Subtitle [4]
	Total Discs
	Total Tracks
	Track Number
	Track Title
	Track Title Sort Order [4]
	Website (official artist website)
	Work Title
	Writer [2]

	Appendix C: Command Line Options
	Appendix D: Keyboard Shortcuts
	Main window
	File
	Edit
	View
	Options
	Tools
	Help
	Metadata view
	Other

	Script editor
	File naming script editor

